PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D Reconstruction
Author(s): Shi, Yifei; Xu, Kai; Niebner, Matthias; Rusinkiewicz, Szymon; Funkhouser, Thomas
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1n26h
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shi, Yifei | - |
dc.contributor.author | Xu, Kai | - |
dc.contributor.author | Niebner, Matthias | - |
dc.contributor.author | Rusinkiewicz, Szymon | - |
dc.contributor.author | Funkhouser, Thomas | - |
dc.date.accessioned | 2021-10-08T19:50:36Z | - |
dc.date.available | 2021-10-08T19:50:36Z | - |
dc.date.issued | 2018 | en_US |
dc.identifier.citation | Shi, Yifei, Kai Xu, Matthias Nießner, Szymon Rusinkiewicz, and Thomas Funkhouser. "PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D Reconstruction." In European Conference on Computer Vision (2018): pp. 767-784. doi:10.1007/978-3-030-01237-3_46 | en_US |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://openaccess.thecvf.com/content_ECCV_2018/papers/Yifei_Shi_PlaneMatch_Patch_Coplanarity_ECCV_2018_paper.pdf | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1n26h | - |
dc.description.abstract | We introduce a novel RGB-D patch descriptor designed for detecting coplanar surfaces in SLAM reconstruction. The core of our method is a deep convolutional neural network that takes in RGB, depth, and normal information of a planar patch in an image and outputs a descriptor that can be used to find coplanar patches from other images. We train the network on 10 million triplets of coplanar and non-coplanar patches, and evaluate on a new coplanarity benchmark created from commodity RGB-D scans. Experiments show that our learned descriptor outperforms alternatives extended for this new task by a significant margin. In addition, we demonstrate the benefits of coplanarity matching in a robust RGBD reconstruction formulation. We find that coplanarity constraints detected with our method are sufficient to get reconstruction results comparable to state-of-the-art frameworks on most scenes, but outperform other methods on established benchmarks when combined with traditional keypoint matching. | en_US |
dc.format.extent | 767 - 784 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | European Conference on Computer Vision | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D Reconstruction | en_US |
dc.type | Conference Article | en_US |
dc.identifier.doi | 10.1007/978-3-030-01237-3_46 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceeding | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Coplanarity.pdf | 3.89 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.