Skip to main content

PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D Reconstruction

Author(s): Shi, Yifei; Xu, Kai; Niebner, Matthias; Rusinkiewicz, Szymon; Funkhouser, Thomas

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1n26h
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShi, Yifei-
dc.contributor.authorXu, Kai-
dc.contributor.authorNiebner, Matthias-
dc.contributor.authorRusinkiewicz, Szymon-
dc.contributor.authorFunkhouser, Thomas-
dc.date.accessioned2021-10-08T19:50:36Z-
dc.date.available2021-10-08T19:50:36Z-
dc.date.issued2018en_US
dc.identifier.citationShi, Yifei, Kai Xu, Matthias Nießner, Szymon Rusinkiewicz, and Thomas Funkhouser. "PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D Reconstruction." In European Conference on Computer Vision (2018): pp. 767-784. doi:10.1007/978-3-030-01237-3_46en_US
dc.identifier.issn0302-9743-
dc.identifier.urihttps://openaccess.thecvf.com/content_ECCV_2018/papers/Yifei_Shi_PlaneMatch_Patch_Coplanarity_ECCV_2018_paper.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1n26h-
dc.description.abstractWe introduce a novel RGB-D patch descriptor designed for detecting coplanar surfaces in SLAM reconstruction. The core of our method is a deep convolutional neural network that takes in RGB, depth, and normal information of a planar patch in an image and outputs a descriptor that can be used to find coplanar patches from other images. We train the network on 10 million triplets of coplanar and non-coplanar patches, and evaluate on a new coplanarity benchmark created from commodity RGB-D scans. Experiments show that our learned descriptor outperforms alternatives extended for this new task by a significant margin. In addition, we demonstrate the benefits of coplanarity matching in a robust RGBD reconstruction formulation. We find that coplanarity constraints detected with our method are sufficient to get reconstruction results comparable to state-of-the-art frameworks on most scenes, but outperform other methods on established benchmarks when combined with traditional keypoint matching.en_US
dc.format.extent767 - 784en_US
dc.language.isoen_USen_US
dc.relation.ispartofEuropean Conference on Computer Visionen_US
dc.rightsAuthor's manuscripten_US
dc.titlePlaneMatch: Patch Coplanarity Prediction for Robust RGB-D Reconstructionen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1007/978-3-030-01237-3_46-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
Coplanarity.pdf3.89 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.