Skip to main content

Finding approximate local minima faster than gradient descent

Author(s): Agarwal, Naman; Allen-Zhu, Zeyuan; Bullins, Brian; Hazan, Elad; Ma, Tengyu

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1n253
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgarwal, Naman-
dc.contributor.authorAllen-Zhu, Zeyuan-
dc.contributor.authorBullins, Brian-
dc.contributor.authorHazan, Elad-
dc.contributor.authorMa, Tengyu-
dc.date.accessioned2021-10-08T19:49:08Z-
dc.date.available2021-10-08T19:49:08Z-
dc.date.issued2017en_US
dc.identifier.citationAgarwal, Naman, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. "Finding approximate local minima faster than gradient descent." In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (2017): pp. 1195-1199. doi:10.1145/3055399.3055464en_US
dc.identifier.urihttps://arxiv.org/pdf/1611.01146.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1n253-
dc.description.abstractWe design a non-convex second-order optimization algorithm that is guaranteed to return an approximate local minimum in time which scales linearly in the underlying dimension and the number of training examples. The time complexity of our algorithm to find an approximate local minimum is even faster than that of gradient descent to find a critical point. Our algorithm applies to a general class of optimization problems including training a neural network and other non-convex objectives arising in machine learning.en_US
dc.format.extent1195 - 1199en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computingen_US
dc.rightsAuthor's manuscripten_US
dc.titleFinding approximate local minima faster than gradient descenten_US
dc.typeConference Articleen_US
dc.identifier.doi10.1145/3055399.3055464-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
ApproximateLocalMinimaFasterGradient.pdf730.03 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.