Skip to main content

Unifying Microscopic and Continuum Treatments of van der Waals and Casimir Interactions

Author(s): Venkataram, PS; Hermann, J; Tkatchenko, A; Rodriguez, Alejandro W

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1mz8v
Abstract: We present an approach for computing long-range van der Waals (vdW) interactions between complex molecular systems and arbitrarily shaped macroscopic bodies, melding atomistic treatments of electronic fluctuations based on density functional theory in the former with continuum descriptions of strongly shape-dependent electromagnetic fields in the latter, thus capturing many-body and multiple scattering effects to all orders. Such a theory is especially important when considering vdW interactions at mesoscopic scales, i.e., between molecules and structured surfaces with features on the scale of molecular sizes, in which case the finite sizes, complex shapes, and resulting nonlocal electronic excitations of molecules are strongly influenced by electromagnetic retardation and wave effects that depend crucially on the shapes of surrounding macroscopic bodies. We show that these effects together can modify vdW interaction energies and forces, as well as molecular shapes deformed by vdW interactions, by orders of magnitude compared to previous treatments based on Casimir-Polder, nonretarded, or pairwise approximations, which are valid only at macroscopically large or atomic-scale separations or in dilute insulating media, respectively.
Publication Date: 2017
Citation: Venkataram, PS, Hermann, J, Tkatchenko, A, Rodriguez, AW. (2017). Unifying Microscopic and Continuum Treatments of van der Waals and Casimir Interactions. Physical Review Letters, 118 (10.1103/PhysRevLett.118.266802
DOI: doi:10.1103/PhysRevLett.118.266802
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review Letters
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.