Skip to main content
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1mz46
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRanganath, Rajesh-
dc.contributor.authorTang, Linpeng-
dc.contributor.authorCharlin, Laurent-
dc.contributor.authorBlei, David M-
dc.date.accessioned2021-10-08T19:44:25Z-
dc.date.available2021-10-08T19:44:25Z-
dc.date.issued2015en_US
dc.identifier.citationRanganath, Rajesh, Linpeng Tang, Laurent Charlin, and David Blei. "Deep Exponential Families." Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics 38 (2015): pp. 762-771.en_US
dc.identifier.issn2640-3498-
dc.identifier.urihttp://proceedings.mlr.press/v38/ranganath15.html-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1mz46-
dc.description.abstractWe describe deep exponential families (DEFs), a class of latent variable models that are inspired by the hidden structures used in deep neural networks. DEFs capture a hierarchy of dependencies between latent variables, and are easily generalized to many settings through exponential families. We perform inference using recent “black box" variational inference techniques. We then evaluate various DEFs on text and combine multiple DEFs into a model for pairwise recommendation data. In an extensive study, we show that going beyond one layer improves predictions for DEFs. We demonstrate that DEFs find interesting exploratory structure in large data sets, and give better predictive performance than state-of-the-art models.en_US
dc.format.extent762 - 771en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the Eighteenth International Conference on Artificial Intelligence and Statisticsen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleDeep Exponential Familiesen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
DeepExponentialFamilies.pdf561.41 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.