Skip to main content

Quantum nonlinear mixing of thermal photons to surpass the blackbody limit

Author(s): Khandekar, C; Yang, L; Rodriguez, Alejandro W; Jacob, Z

To refer to this page use:
Abstract: Nearly all thermal radiation phenomena involving materials with linear response can be accurately described via semi-classical theories of light. Here, we go beyond these traditional paradigms to study a nonlinear system that, as we show, requires quantum theory of damping. Specifically, we analyze thermal radiation from a resonant system containing a χ(2) nonlinear medium and supporting resonances at frequencies ω1 and ω2 ≈ 2ω1, where both resonators are driven only by intrinsic thermal fluctuations. Within our quantum formalism, we reveal new possibilities for shaping the thermal radiation. We show that the resonantly enhanced nonlinear interaction allows frequency-selective enhancement of thermal emission through upconversion, surpassing the well-known blackbody limits associated with linear media. Surprisingly, we also find that the emitted thermal light exhibits non-trivial statistics (g(2)(0), ∼2) and biphoton intensity correlations (at two distinct frequencies). We highlight that these features can be observed in the near future by heating a properly designed nonlinear system, without the need for any external signal. Our work motivates new interdisciplinary inquiries combining the fields of nonlinear photonics, quantum optics and thermal science.
Publication Date: 2020
Citation: Khandekar, C, Yang, L, Rodriguez, AW, Jacob, Z. (2020). Quantum nonlinear mixing of thermal photons to surpass the blackbody limit. Optics Express, 28 (2045 - 2059. doi:10.1364/OE.377278
DOI: doi:10.1364/OE.377278
Pages: 2045 - 2059
Type of Material: Journal Article
Journal/Proceeding Title: Optics Express
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.