Skip to main content

3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions

Author(s): Zeng, Andy; Song, Shuran; Niebner, Matthias; Fisher, Matthew; Xiao, Jianxiong; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1m836
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZeng, Andy-
dc.contributor.authorSong, Shuran-
dc.contributor.authorNiebner, Matthias-
dc.contributor.authorFisher, Matthew-
dc.contributor.authorXiao, Jianxiong-
dc.contributor.authorFunkhouser, Thomas-
dc.date.accessioned2021-10-08T19:50:25Z-
dc.date.available2021-10-08T19:50:25Z-
dc.date.issued2017en_US
dc.identifier.citationZeng, Andy, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and Thomas Funkhouser. "3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions." In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017): pp. 199-208. doi:10.1109/CVPR.2017.29en_US
dc.identifier.issn1063-6919-
dc.identifier.urihttps://openaccess.thecvf.com/content_cvpr_2017/papers/Zeng_3DMatch_Learning_Local_CVPR_2017_paper.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1m836-
dc.description.abstractMatching local geometric features on real-world depth images is a challenging task due to the noisy, low-resolution, and incomplete nature of 3D scan data. These difficulties limit the performance of current state-of-art methods, which are typically based on histograms over geometric properties. In this paper, we present 3DMatch, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data. To amass training data for our model, we propose a self-supervised feature learning method that leverages the millions of correspondence labels found in existing RGB-D reconstructions. Experiments show that our descriptor is not only able to match local geometry in new scenes for reconstruction, but also generalize to different tasks and spatial scales (e.g. instance-level object model alignment for the Amazon Picking Challenge, and mesh surface correspondence). Results show that 3DMatch consistently outperforms other state-of-the-art approaches by a significant margin. Code, data, benchmarks, and pre-trained models are available online at http://3dmatch.cs.princeton.edu.en_US
dc.format.extent199 - 208en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.rightsAuthor's manuscripten_US
dc.title3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructionsen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/CVPR.2017.29-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
LearningLocal.pdf1.75 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.