Skip to main content

Well-posedness of the limiting equation of a noisy consensus model in opinion dynamics

Author(s): Chazelle, Bernard; Jiu, Q; Li, Q; Wang, C

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1kx17
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChazelle, Bernard-
dc.contributor.authorJiu, Q-
dc.contributor.authorLi, Q-
dc.contributor.authorWang, C-
dc.date.accessioned2018-07-20T15:08:42Z-
dc.date.available2018-07-20T15:08:42Z-
dc.date.issued2017-07-05en_US
dc.identifier.citationChazelle, B, Jiu, Q, Li, Q, Wang, C. (2017). Well-posedness of the limiting equation of a noisy consensus model in opinion dynamics. Journal of Differential Equations, 263 (365 - 397. doi:10.1016/j.jde.2017.02.036en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1kx17-
dc.description.abstractThis paper establishes the global well-posedness of the nonlinear Fokker–Planck equation for a noisy version of the Hegselmann–Krause model. The equation captures the mean-field behavior of a classic multiagent system for opinion dynamics. We prove the global existence, uniqueness, nonnegativity and regularity of the weak solution. We also exhibit a global stability condition, which delineates a forbidden region for consensus formation. This is the first nonlinear stability result derived for the Hegselmann–Krause modelen_US
dc.format.extent365 - 397en_US
dc.language.isoen_USen_US
dc.relation.ispartofJournal of Differential Equationsen_US
dc.rightsAuthor's manuscripten_US
dc.titleWell-posedness of the limiting equation of a noisy consensus model in opinion dynamicsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.jde.2017.02.036-
dc.date.eissued2017-03-03en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1510.06487v1.pdf290.46 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.