Skip to main content

Data secrecy in distributed storage systems under exact repair

Author(s): Goparaju, Sreechakra; Rouayheb, Salim El; Calderbank, Robert; Poor, H Vincent

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1kv1g
Abstract: The problem of securing data against eavesdropping in distributed storage systems is studied. The focus is on systems that use linear codes and implement exact repair to recover from node failures. The maximum file size that can be stored securely is determined for systems in which all the available nodes help in repair (i.e., repair degree d = n -1, where n is the total number of nodes) and for any number of compromised nodes. Similar results in the literature are restricted to the case of at most two compromised nodes. Moreover, new explicit upper bounds are given on the maximum secure file size for systems with d <; n - 1. The key ingredients for the contribution of this paper are new results on subspace intersection for the data downloaded during repair. The new bounds imply the interesting fact that the maximum amount of data that can be stored securely decreases exponentially with the number of compromised nodes. Whether this exponential decrease is fundamental or is a consequence of the exactness and linearity constraints remains an open question.
Publication Date: Jun-2013
Citation: Goparaju, Sreechakra, Salim El Rouayheb, Robert Calderbank, and H. Vincent Poor. "Data secrecy in distributed storage systems under exact repair." In 2013 International Symposium on Network Coding (NetCod), (2013): 1-6. doi:10.1109/NetCod.2013.6570831
DOI: 10.1109/NetCod.2013.6570831
ISSN: 2374-9660
Type of Material: Conference Article
Journal/Proceeding Title: 2013 International Symposium on Network Coding (NetCod)
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.