New Techniques for Obfuscating Conjunctions
Author(s): Bartusek, James; Lepoint, Tancrède; Ma, Fermi; Zhandry, Mark
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1kn83
Abstract: | A conjunction is a function π(π₯1,β¦,π₯π)=βπβπππ where πβ[π] and each ππ is π₯π or Β¬π₯π . Bishop et al. (CRYPTO 2018) recently proposed obfuscating conjunctions by embedding them in the error positions of a noisy Reed-Solomon codeword and placing the codeword in a group exponent. They prove distributional virtual black box (VBB) security in the generic group model for random conjunctions where |π|β₯0.226π . While conjunction obfuscation is known from LWE [31, 47], these constructions rely on substantial technical machinery. In this work, we conduct an extensive study of simple conjunction obfuscation techniques. We abstract the Bishop et al. scheme to obtain an equivalent yet more efficient βdualβ scheme that can handle conjunctions over exponential size alphabets. This scheme admits a straightforward proof of generic group security, which we combine with a novel combinatorial argument to obtain distributional VBB security for |S| of any size. If we replace the Reed-Solomon code with a random binary linear code, we can prove security from standard LPN and avoid encoding in a group. This addresses an open problem posed by Bishop et al. to prove security of this simple approach in the standard model. We give a new construction that achieves information theoretic distributional VBB security and weak functionality preservation for |π|β₯πβππΏ and πΏ<1 . Assuming discrete log and πΏ<1/2 , we satisfy a stronger notion of functionality preservation for computationally bounded adversaries while still achieving information theoretic security. |
Publication Date: | 2019 |
Citation: | Bartusek, James, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. "New Techniques for Obfuscating Conjunctions." In Annual International Conference on the Theory and Applications of Cryptographic Techniques (2019): pp. 636-666. doi:10.1007/978-3-030-17659-4_22 |
DOI: | 10.1007/978-3-030-17659-4_22 |
ISSN: | 0302-9743 |
EISSN: | 1611-3349 |
Pages: | 636 - 666 |
Type of Material: | Conference Article |
Journal/Proceeding Title: | Annual International Conference on the Theory and Applications of Cryptographic Techniques |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.