Skip to main content

A General Robust Linear Transceiver Design for Multi-Hop Amplify-and-Forward MIMO Relaying Systems

Author(s): Xing, Chengwen; Ma, Shaodan; Fei, Zesong; Wu, Yik-Chung; Poor, H Vincent

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jz0v
Abstract: In this paper, linear transceiver design for multi-hop amplify-and-forward (AF) multi-input multi-output (MIMO) relaying systems with Gaussian distributed channel estimation errors is investigated. Commonly used transceiver design criteria including weighted mean-square-error (MSE) minimization, capacity maximization, worst-MSE/MAX-MSE minimization and weighted sum-rate maximization, are considered and unified into a single matrix-variate optimization problem. A general robust design algorithm is proposed to solve the unified problem. Specifically, by exploiting majorization theory and properties of matrix-variate functions, the optimal structure of the robust transceiver is derived when either the covariance matrix of channel estimation errors seen from the transmitter side or the corresponding covariance matrix seen from the receiver side is proportional to an identity matrix. Based on the optimal structure, the original transceiver design problems are reduced to much simpler problems with only scalar variables whose solutions are readily obtained by an iterative water-filling algorithm. A number of existing transceiver design algorithms are found to be special cases of the proposed solution. The differences between our work and the existing related work are also discussed in detail. The performance advantages of the proposed robust designs are demonstrated by simulation results.
Publication Date: 1-Mar-2013
Citation: Xing, Chengwen, Ma, Shaodan, Fei, Zesong, Wu, Yik-Chung, Poor, H Vincent. (2013). A General Robust Linear Transceiver Design for Multi-Hop Amplify-and-Forward MIMO Relaying Systems. IEEE Transactions on Signal Processing, 61 (5), 1196 - 1209. doi:10.1109/TSP.2013.2243439
DOI: doi:10.1109/TSP.2013.2243439
ISSN: 1053-587X
EISSN: 1941-0476
Pages: 1196 - 1209
Type of Material: Journal Article
Journal/Proceeding Title: IEEE Transactions on Signal Processing
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.