Skip to main content

Dynamically managed data for CPU-GPU architectures

Author(s): Jablin, Thomas B; Jablin, James A; Prabhu, Prakash; Liu, Feng; August, David I

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jk0p
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJablin, Thomas B-
dc.contributor.authorJablin, James A-
dc.contributor.authorPrabhu, Prakash-
dc.contributor.authorLiu, Feng-
dc.contributor.authorAugust, David I-
dc.date.accessioned2021-10-08T19:45:20Z-
dc.date.available2021-10-08T19:45:20Z-
dc.date.issued2012-03en_US
dc.identifier.citationJablin, Thomas B., James A. Jablin, Prakash Prabhu, Feng Liu, and David I. August. "Dynamically managed data for CPU-GPU architectures." Proceedings of the Tenth International Symposium on Code Generation and Optimization (2012): pp. 165-174. doi:10.1145/2259016.2259038en_US
dc.identifier.issn2164-2397-
dc.identifier.urihttps://liberty.princeton.edu/Publications/cgo12_dymand.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1jk0p-
dc.description.abstractGPUs are flexible parallel processors capable of accelerating real applications. To exploit them, programmers must ensure a consistent program state between the CPU and GPU memories by managing data. Manually managing data is tedious and error-prone. In prior work on automatic CPU-GPU data management, alias analysis quality limits performance, and type-inference quality limits applicability. This paper presents Dynamically Managed Data (DyManD), the first automatic system to manage complex and recursive data-structures without static analyses. By replacing static analyses with a dynamic run-time system, DyManD overcomes the performance limitations of alias analysis and enables management for complex and recursive data-structures. DyManD-enabled GPU parallelization matches the performance of prior work equipped with perfectly precise alias analysis for 27 programs and demonstrates improved applicability on programs not previously managed automatically.en_US
dc.format.extent165 - 174en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the Tenth International Symposium on Code Generation and Optimizationen_US
dc.rightsAuthor's manuscripten_US
dc.titleDynamically managed data for CPU-GPU architecturesen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1145/2259016.2259038-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
DynamicallyManagedDataCPUGPUArchitecture.pdf369.23 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.