Skip to main content

Visible Machine Learning for Biomedicine.

Author(s): Yu, Michael K; Ma, Jianzhu; Fisher, Jasmin; Kreisberg, Jason F; Raphael, Benjamin J; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jg0j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, Michael K-
dc.contributor.authorMa, Jianzhu-
dc.contributor.authorFisher, Jasmin-
dc.contributor.authorKreisberg, Jason F-
dc.contributor.authorRaphael, Benjamin J-
dc.contributor.authorIdeker, Trey-
dc.date.accessioned2021-10-08T19:47:05Z-
dc.date.available2021-10-08T19:47:05Z-
dc.date.issued2018-06en_US
dc.identifier.citationYu, Michael K, Ma, Jianzhu, Fisher, Jasmin, Kreisberg, Jason F, Raphael, Benjamin J, Ideker, Trey. (2018). Visible Machine Learning for Biomedicine.. Cell, 173 (7), 1562 - 1565. doi:10.1016/j.cell.2018.05.056en_US
dc.identifier.issn0092-8674-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1jg0j-
dc.description.abstractA major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology.en_US
dc.format.extent1562 - 1565en_US
dc.languageengen_US
dc.language.isoen_USen_US
dc.relation.ispartofCellen_US
dc.rightsAuthor's manuscripten_US
dc.titleVisible Machine Learning for Biomedicine.en_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1016/j.cell.2018.05.056-
dc.identifier.eissn1097-4172-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
VisibleMachineLearningBiomedicine.pdf234.17 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.