Visible Machine Learning for Biomedicine.
Author(s): Yu, Michael K; Ma, Jianzhu; Fisher, Jasmin; Kreisberg, Jason F; Raphael, Benjamin J; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1jg0j
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yu, Michael K | - |
dc.contributor.author | Ma, Jianzhu | - |
dc.contributor.author | Fisher, Jasmin | - |
dc.contributor.author | Kreisberg, Jason F | - |
dc.contributor.author | Raphael, Benjamin J | - |
dc.contributor.author | Ideker, Trey | - |
dc.date.accessioned | 2021-10-08T19:47:05Z | - |
dc.date.available | 2021-10-08T19:47:05Z | - |
dc.date.issued | 2018-06 | en_US |
dc.identifier.citation | Yu, Michael K, Ma, Jianzhu, Fisher, Jasmin, Kreisberg, Jason F, Raphael, Benjamin J, Ideker, Trey. (2018). Visible Machine Learning for Biomedicine.. Cell, 173 (7), 1562 - 1565. doi:10.1016/j.cell.2018.05.056 | en_US |
dc.identifier.issn | 0092-8674 | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1jg0j | - |
dc.description.abstract | A major ambition of artificial intelligence lies in translating patient data to successful therapies. Machine learning models face particular challenges in biomedicine, however, including handling of extreme data heterogeneity and lack of mechanistic insight into predictions. Here, we argue for "visible" approaches that guide model structure with experimental biology. | en_US |
dc.format.extent | 1562 - 1565 | en_US |
dc.language | eng | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Cell | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Visible Machine Learning for Biomedicine. | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | doi:10.1016/j.cell.2018.05.056 | - |
dc.identifier.eissn | 1097-4172 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/journal-article | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
VisibleMachineLearningBiomedicine.pdf | 234.17 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.