Skip to main content

High-Precision Localization Using Ground Texture

Author(s): Zhang, Linguang; Finkelstein, Adam; Rusinkiewicz, Szymon

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1jb9r
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Linguang-
dc.contributor.authorFinkelstein, Adam-
dc.contributor.authorRusinkiewicz, Szymon-
dc.date.accessioned2021-10-08T19:45:36Z-
dc.date.available2021-10-08T19:45:36Z-
dc.date.issued2019en_US
dc.identifier.citationZhang, Linguang, Adam Finkelstein, and Szymon Rusinkiewicz. "High-precision localization using ground texture." 2019 International Conference on Robotics and Automation (ICRA) (2019): pp. 6381-6387. doi:10.1109/ICRA.2019.8794106en_US
dc.identifier.issn1050-4729-
dc.identifier.urihttps://pixl.cs.princeton.edu/pubs/Zhang_2019_HLU/microgps-icra19.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1jb9r-
dc.description.abstractLocation-aware applications play an increasingly critical role in everyday life. However, satellite-based localization (e.g., GPS) has limited accuracy and can be unusable in dense urban areas and indoors. We introduce an image-based global localization system that is accurate to a few millimeters and performs reliable localization both indoors and outside. The key idea is to capture and index distinctive local keypoints in ground textures. This is based on the observation that ground textures including wood, carpet, tile, concrete, and asphalt may look random and homogeneous, but all contain cracks, scratches, or unique arrangements of fibers. These imperfections are persistent, and can serve as local features. Our system incorporates a downward-facing camera to capture the fine texture of the ground, together with an image processing pipeline that locates the captured texture patch in a compact database constructed offline. We demonstrate the capability of our system to robustly, accurately, and quickly locate test images on various types of outdoor and indoor ground surfaces. This paper contains a supplementary video. All datasets and code are available online at microgps.cs.princeton.edu.en_US
dc.format.extent6381 - 6387en_US
dc.language.isoen_USen_US
dc.relation.ispartof2019 International Conference on Robotics and Automation (ICRA)en_US
dc.rightsAuthor's manuscripten_US
dc.titleHigh-Precision Localization Using Ground Textureen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/ICRA.2019.8794106-
dc.identifier.eissn2577-087X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
HighPrecisionLocalizationGroundTexture.pdf26.23 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.