Skip to main content

Noise versus Computational Intractability in Dynamics

Author(s): Braverman, Mark

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1hv5f
Abstract: Computation plays a key role in predicting and analyzing natural phenomena. There are two fundamental barriers to our ability to computationally understand the long-term behavior of a dynamical system that describes a natural process. The first one is unaccounted-for errors, which may make the system unpredictable beyond a very limited time horizon. This is especially true for chaotic systems, where a small change in the initial conditions may cause a dramatic shift in the trajectories. The second one is Turing-completeness. By the undecidability of the Halting Problem, the long-term prospects of a system that can simulate a Turing Machine cannot be determined computationally. We shall discuss the interplay between these two forces – unaccounted-for errors and Turing-completeness. We show that the introduction of even a small amount of noise into a dynamical system is sufficient to “destroy” Turing-completeness, and to make the system’s long-term behavior computationally predictable. On a more technical level, we deal with long-term statistical properties of dynamical systems, as described by invariant measures. We show that while there are simple dynamical systems for which the invariant measures are non-computable, perturbing such systems makes the invariant measures efficiently computable. Thus, noise that makes the short term behavior of the system harder to predict, may make its long term statistical behavior computationally tractable. We also obtain some insight into the computational complexity of predicting systems affected by random noise.
Publication Date: 2013
Citation: Braverman, Mark. "Noise versus Computational Intractability in Dynamics." Conference on Computability in Europe (2013): pp. 32-32. doi:10.1007/978-3-642-39053-1_4
DOI: 10.1007/978-3-642-39053-1_4
ISSN: 0302-9743
Pages: 32 - 32
Type of Material: Conference Article
Series/Report no.: Lecture Notes in Computer Science;
Journal/Proceeding Title: Conference on Computability in Europe
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.