Skip to main content

Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide

Author(s): Zhang, Cui; Dabbs, Daniel M.; Liu, Li-Min; Aksay, Ilhan A.; Car, Roberto; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1hr1n
Abstract: Infrared spectroscopy in combination with density functional theory calculations has been widely used to characterize the structure of graphene oxide and its reduced forms. Yet, the synergistic effects of different functional groups, lattice defects, and edges on the vibrational spectra are not well understood. Here, we report first-principles calculations of the infrared spectra of graphene oxide performed on realistic, thermally equilibrated, structural models that incorporate lattice vacancies and edges along with various oxygen-containing functional groups. Models including adsorbed water are examined as well. Our results show that lattice vacancies lead to important blue and red shifts in the OH stretching and bending bands, respectively, whereas the presence of adsorbed water leaves these shifts largely unaffected. We also find unique infrared features for edge carboxyls resulting from interactions with both nearby functional groups and the graphene lattice. Comparison of the computed vibrational properties to our experiments clarifies the origin of several observed features and provides evidence that defects and edges are essential for characterizing and interpreting the infrared spectrum of graphene oxide.
Publication Date: 2015
Electronic Publication Date: Aug-2015
Citation: Zhang, C, Dabbs, DM, Liu, L-M, Aksay, IA, Car, R, Selloni, A. (2015). Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide. Journal of Physical Chemistry C, 119 (18167 - 18176). doi:10.1021/acs.jpcc.5b02727
DOI: doi:10.1021/acs.jpcc.5b02727
Pages: 18167 - 18176
Type of Material: Journal Article
Journal/Proceeding Title: Journal of Physical Chemistry C
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.