Faster convex optimization: Simulated annealing with an efficient universal barrier
Author(s): Abernethy, J; Hazan, Elad
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1hm4c
Abstract: | This paper explores a surprising equivalence between two seemingly-distinct convex optimization methods. We show that simulated annealing, a well-studied random walk algorithms, is directly equivalent, in a certain sense, to the central path interior point algorithm for the the en- tropic universal barrier function. This connection exhibits several benefits. First, we are able improve the state of the art time complexity for convex optimization under the membership oracle model by devising a new temperature schedule for simulated annealing motivated by central path following interior point methods. Second, we get an efficient randomized interior point method with an efficiently computable universal barrier for any convex set described by a membership oracle. Previously, efficiently computable barriers were known only for particular convex sets. |
Publication Date: | 2016 |
Citation: | Abernethy, J, Hazan, E. (2016). Faster convex optimization: Simulated annealing with an efficient universal barrier. 6 (3734 - 3746 |
Pages: | 3734 - 3746 |
Type of Material: | Conference Article |
Journal/Proceeding Title: | 33rd International Conference on Machine Learning |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.