Skip to main content

A Reinforcement Learning Approach to Weaning of Mechanical Ventilation in Intensive Care Units

Author(s): Prasad, Niranjani; Cheng, Li-Fang; Chivers, Corey; Draugelis, Michael; Engelhardt, Barbara E

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1hk0b
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPrasad, Niranjani-
dc.contributor.authorCheng, Li-Fang-
dc.contributor.authorChivers, Corey-
dc.contributor.authorDraugelis, Michael-
dc.contributor.authorEngelhardt, Barbara E-
dc.date.accessioned2021-10-08T19:48:38Z-
dc.date.available2021-10-08T19:48:38Z-
dc.date.issued2017en_US
dc.identifier.citationPrasad, Niranjani, Li-Fang Cheng, Corey Chivers, Michael Draugelis, and Barbara E Engelhardt. “A Reinforcement Learning Approach to Weaning of Mechanical Ventilation in Intensive Care Units.” 33rd Conference on Uncertainty in Artificial Intelligence, 2017.en_US
dc.identifier.urihttp://auai.org/uai2017/proceedings/papers/209.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1hk0b-
dc.description.abstractThe management of invasive mechanical ventilation, and the regulation of sedation and analgesia during ventilation, constitutes a major part of the care of patients admitted to intensive care units. Both prolonged dependence on mechanical ventilation and premature extubation are associated with increased risk of complications and higher hospital costs, but clinical opinion on the best protocol for weaning patients off of a ventilator varies. This work aims to develop a decision support tool that uses available patient information to predict time-to-extubation readiness and to recommend a personalized regime of sedation dosage and ventilator support. To this end, we use off-policy reinforcement learning algorithms to determine the best action at a given patient state from sub-optimal historical ICU data. We compare treatment policies from fitted Qiteration with extremely randomized trees and with feedforward neural networks, and demonstrate that the policies learnt show promise in recommending weaning protocols with improved outcomes, in terms of minimizing rates of reintubation and regulating physiological stability.en_US
dc.language.isoen_USen_US
dc.relation.ispartof33rd Conference on Uncertainty in Artificial Intelligenceen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleA Reinforcement Learning Approach to Weaning of Mechanical Ventilation in Intensive Care Unitsen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
RLWeaningMechVentilation.pdf812.02 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.