Skip to main content

Secure Short-Packet Communications for Mission-Critical IoT Applications

Author(s): Wang, Hui-Ming; Yang, Qian; Ding, Zhiguo; Poor, H Vincent

To refer to this page use:
Abstract: In applications of the Internet of Things (IoT), the use of short packets is expected to meet the stringent latency requirement in ultra-reliable low-latency communications; however, the incurred security issues and the impact of finite blocklength coding on the physical-layer security are not well understood. This paper investigates the performance of secure short-packet communications in a mission-critical IoT system with an external multi-antenna eavesdropper. An analytical framework is proposed to approximate the average achievable secrecy throughput of the system with finite blocklength coding. To gain more insight, a simple case with a single-antenna access point (AP) is considered first, in which the secrecy throughput is approximated in a closed form. Based on that result, the optimal blocklengths to maximize the secrecy throughput with and without the reliability and latency constraints, respectively, are derived. For the case with a multi-antenna AP, following the proposed analytical framework, closed-form approximations for the secrecy throughput are obtained under both beamforming and artificial-noise-aided transmission schemes. The numerical results verify the accuracy of the proposed approximations and illustrate the impact of the system parameters on the tradeoff between transmission latency and reliability under a secrecy constraint.
Publication Date: 20-Mar-2019
Citation: Wang, Hui-Ming, Yang, Qian, Ding, Zhiguo, Poor, H Vincent. (2019). Secure Short-Packet Communications for Mission-Critical IoT Applications. IEEE Transactions on Wireless Communications, 18 (5), 2565 - 2578. doi:10.1109/twc.2019.2904968
DOI: doi:10.1109/twc.2019.2904968
ISSN: 1536-1276
EISSN: 1558-2248
Pages: 2565 - 2578
Type of Material: Journal Article
Journal/Proceeding Title: IEEE Transactions on Wireless Communications
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.