Grounding language for transfer in deep reinforcement learning
Author(s): Narasimhan, Karthik; Barzilay, R; Jaakkola, T
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1hg06
Abstract: | © 2018 AI Access Foundation. All rights reserved. In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively. |
Publication Date: | 1-Dec-2018 |
Citation: | Narasimhan, K, Barzilay, R, Jaakkola, T. (2018). Grounding language for transfer in deep reinforcement learning. Journal of Artificial Intelligence Research, 63 (849 - 874. doi:10.1613/jair.1.11263 |
DOI: | doi:10.1613/jair.1.11263 |
EISSN: | 1076-9757 |
Pages: | 849 - 874 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Journal of Artificial Intelligence Research |
Version: | Final published version. This is an open access article. |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.