Skip to main content

Isotope effects in liquid water via deep potential molecular dynamics

Author(s): Ko, Hsin-Yu; Zhang, Linfeng; Santra, Biswajit; Wang, Han; E, Weinan; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1h708114
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKo, Hsin-Yu-
dc.contributor.authorZhang, Linfeng-
dc.contributor.authorSantra, Biswajit-
dc.contributor.authorWang, Han-
dc.contributor.authorE, Weinan-
dc.contributor.authorDiStasio Jr, Robert A-
dc.contributor.authorCar, Roberto-
dc.date.accessioned2024-06-13T13:48:43Z-
dc.date.available2024-06-13T13:48:43Z-
dc.date.issued2019-10-15en_US
dc.identifier.citationKo, Hsin-Yu, Zhang, Linfeng, Santra, Biswajit, Wang, Han, E, Weinan, DiStasio Jr, Robert A, Car, Roberto. (2019). Isotope effects in liquid water via deep potential molecular dynamics. Molecular Physics, 117 (22), 3269 - 3281. doi:10.1080/00268976.2019.1652366en_US
dc.identifier.issn0026-8976-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1h708114-
dc.description.abstractA comprehensive microscopic understanding of ambient liquid water is a major challenge for ab initio simulations as it simultaneously requires an accurate quantum mechanical description of the underlying potential energy surface (PES) as well as extensive sampling of configuration space. Due to the presence of light atoms (e.g. H or D), nuclear quantum fluctuations lead to observable changes in the structural properties of liquid water (e.g. isotope effects), and therefore provide yet another challenge for ab initio approaches. In this work, we demonstrate that the combination of dispersion-inclusive hybrid density functional theory (DFT), the Feynman discretised path-integral (PI) approach, and machine learning (ML) constitutes a versatile ab initio based framework that enables extensive sampling of both thermal and nuclear quantum fluctuations on a quite accurate underlying PES. In particular, we employ the recently developed deep potential molecular dynamics (DPMD) model – a neural-network representation of the ab initio PES – in conjunction with a PI approach based on the generalised Langevin equation (PIGLET) to investigate how isotope effects influence the structural properties of ambient liquid H2O and D2O. Through a detailed analysis of the interference differential cross sections as well as several radial and angular distribution functions, we demonstrate that this approach can furnish a semi-quantitative prediction of these subtle isotope effects.en_US
dc.format.extent3269 - 3281en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofMolecular Physicsen_US
dc.rightsAuthor's manuscripten_US
dc.titleIsotope effects in liquid water via deep potential molecular dynamicsen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1080/00268976.2019.1652366-
dc.date.eissued2019-10-15en_US
dc.identifier.eissn1362-3028-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Isotope effects in liquid water via deep potential molecular dynamics.pdf861.31 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.