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ABSTRACT
A comprehensive microscopic understanding of ambient liquid water is a major chal-
lenge for ab initio simulations as it simultaneously requires an accurate quantum
mechanical description of the underlying potential energy surface (PES) as well as
extensive sampling of configuration space. Due to the presence of light atoms (e.g.,
H or D), nuclear quantum fluctuations lead to observable changes in the structural
properties of liquid water (e.g., isotope effects), and therefore provide yet another
challenge for ab initio approaches. In this work, we demonstrate that the combina-
tion of dispersion-inclusive hybrid density functional theory (DFT), the Feynman
discretized path-integral (PI) approach, and machine learning (ML) constitutes a
versatile ab initio based framework that enables extensive sampling of both thermal
and nuclear quantum fluctuations on a quite accurate underlying PES. In particu-
lar, we employ the recently developed deep potential molecular dynamics (DPMD)
model—a neural-network representation of the ab initio PES—in conjunction with
a PI approach based on the generalized Langevin equation (PIGLET) to investigate
how isotope effects influence the structural properties of ambient liquid H2O and
D2O. Through a detailed analysis of the interference differential cross sections as
well as several radial and angular distribution functions, we demonstrate that this
approach can furnish a semi-quantitative prediction of these subtle isotope effects.

KEYWORDS
liquid water; nuclear quantum effects; ab initio molecular dynamics; deep neural
network; isotope effects

1. Introduction

Despite the relatively simple structure of a single water molecule, water has an un-
matched complexity in the condensed (liquid) phase. This complexity mainly originates
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from the delicate balance between weak non-covalent intermolecular interactions, e.g.,
the hydrogen bond (HB) network and van der Waals (vdW) dispersion, and thermal
(entropic) effects [1]. On top of this delicate balance, nuclear quantum effects (NQEs)—
such as zero-point motion—also affect the structural and dynamical properties of liquid
water [2]. This is primarily due to the presence of light atoms (such as H) and the
central role played by the tetrahedral HB network in determining aqueous properties in
the condensed phase.

A salient example of how NQEs affect the structure of liquid water is the experi-
mentally observed isotope effect upon substitution of H to D. First demonstrated by
Soper and Benmore using joint X-ray/neutron scattering experiments [3], isotope effects
were shown to manifest as significant covalent-bond contraction (by ≈ 3%) and HB
elongation (by ≈ 4%) when comparing H2O to D2O. In this study, the positions of the
individual atoms were assigned based on the so-called empirical potential structure
refinement (EPSR) method [4, 5], in which a physically motivated (but empirical)
interatomic potential was utilized in conjunction with reverse Monte Carlo (MC) simu-
lations to generate microscopic snapshots of liquid water (H2O or D2O) that reproduce
the experimentally observed interference differential cross section, F (n)

int (Q) (vide infra).
These EPSR-based atomic positions were then used to generate structural properties
such as radial distribution functions (RDFs) and the OOO angular distribution function
(ADF), from which one can quantify how the H → D isotopic substitution affects the
structure of liquid water.

The microscopic structure of liquid water can also be modeled using ab initio
molecular dynamics (AIMD) simulations, in which the nuclear potential energy surface
(PES) is generated “on the fly” from the electronic ground state without the need for
empirical input [6, 7]. By generating a trajectory of configurations based on interatomic
forces derived from a first-principles electronic structure theory, this technique allows
for a quantum mechanical treatment of the structural and dynamical properties of
complex condensed-phase systems (such as liquid water) at a given set of thermodynamic
conditions. In addition, AIMD simulations can also describe the electronic and dielectric
properties of the system, as well as any chemical reactions that may occur (i.e., bond
cleavage/formation).

Due to its quite favorable balance between accuracy and computational cost, density
functional theory (DFT) [8–10] has emerged as the most commonly used electronic
structure theory method during AIMD simulations of condensed-phase systems. While
DFT is (in principle) an exact theory, the functional form of the exchange-correlation
energy still remains unknown; as such, DFT (in practice) relies on an established hier-
archy of approximations which allows for (semi-)systematic improvements in accuracy
with a corresponding increase in the computational cost [11]. Previous studies have
demonstrated that generalized-gradient approximation (GGA) based DFT function-
als [12–14]—due to their propensity for self-interaction error [15] and lack of non-local
correlation effects such as vdW dispersion interactions [16]—are inadequate for provid-
ing an accurate and reliable description of liquid water. Instead, it is more appropriate
to use constraint-based meta-GGA functionals (such as SCAN [17–20]) or the class
of more accurate vdW-inclusive hybrid functionals (such as PBE0-TS [1, 21–26] or
revPBE0-D3 [21, 22, 27–29]) when describing condensed-phase aqueous systems.

During AIMD simulations, the nuclei are often treated as classical (point) particles
moving on the underlying PES generated from an “on-the-fly” and fully quantum
mechanical description of the electrons. To rigorously include NQEs while sampling
equilibrium structural properties, the Feynman discretized path-integral (PI) [30–33]
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approach is typically used. In this approach, each nucleus is mapped onto a classical ring
polymer comprised of P beads (coupled via harmonic springs), allowing for a so-called
PI-AIMD simulation of the system in which the electronic and nuclear degrees of
freedom are both treated quantum mechanically. At finite (but non-zero) temperatures,
sampling of the exact quantum distribution of a system (in configuration space) can
be accomplished to a desired level of accuracy with PI-AIMD simulations employing
a finite number of beads. However, standard PI-AIMD simulations of liquid water at
ambient conditions (300 K, 1 bar) are still computationally demanding for the following
reasons: (i) they require many beads (P ≥ 32) in each classical ring polymer to provide
a sufficiently converged description of equilibrium structural properties [34–37]; (ii)
they also require relatively long trajectories (t > 20 ps) to obtain sufficient statistical
convergence for many physical quantities, e.g., RDFs and the equilibrium density.
The difficulty originating from the required number of beads has been the subject
of intense research and can now be alleviated (to varying extents) using a number
of different methods, e.g., generalized Langevin equation (GLE) based colored-noise
thermostats [38–40], ring polymer contraction [41–45], and imaginary-time perturbed
path integral approach [46, 47], to name a few. The sampling time issue is an intrinsic
limitation of PI-AIMD (and AIMD) simulations that can only be addressed by more
efficient algorithms and/or approximations for evaluating the underlying ab initio PES.

Recent progress in the application of machine-learning (ML) techniques to represent
PES for complex systems containing many atoms provides a way to overcome this last
computational hurdle [48–57]. After training on high-quality ab initio PES data, ML-
based methods—with a linear-scaling associated computational cost that is many orders
of magnitude cheaper than AIMD—allow one to perform extensive MD simulations
without any significant loss of accuracy. In fact, such methods have already been used
to study the complex behavior of liquid water [29, 56, 58, 59]. For example, Cheng
and coworkers [29] recently used a neural network (NN) based potential to study the
thermodynamics of liquid water and ice I (Ih and Ic) under ambient conditions; in
doing so, they accurately predicted the RDFs of liquid water, the melting point of
ice Ih, and the density maximum in liquid water. Moreover, suitable extensions of
these methods also allow one to further coarse-grain the system into beads representing
each water molecule; this has the potential to significantly reduce the computational
cost without losing the main structural information in the original system [60]. Among
the suite of existing ML methods, the deep potential molecular dynamics (DPMD)
approach [55–57] utilizes a deep NN to represent the many-body potential energy as
a sum of auxiliary “atomic” energies associated with individual atoms in the system.
For a given atom, this “atomic” energy depends differentiably on its local environment,
i.e., the relative coordinates of its vicinal surrounding atoms within a smooth radial
distance cutoff. A novel symmetry-preserving atomic local coordinate system is then
introduced as input to the deep NN and an adaptive training procedure on high-quality
ab initio PES data is performed to optimize the NN parameters. By reproducing the
total potential energy, atomic forces, and stress tensor to well within the accuracy of
the ab initio data [55–57], the resulting DPMD model can recover structural properties
that are essentially indistinguishable when compared to the AIMD results for a wide
variety of systems (including liquid water).

In this work, we utilize DPMD and PI-DPMD simulations to investigate the experi-
mentally observed structural changes [3] in liquid water upon isotopic substitution of
H2O with D2O. In particular, we demonstrate that the DPMD model—when trained
on a single, relatively short (≈ 8 ps) PI-AIMD simulation of the lighter isotope (liquid
H2O)—can be used to provide a (semi-)quantitative description of the isotope effects
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found in F
(n)
int (Q), the oxygen–oxygen (OO) RDF, and the oxygen–oxygen–oxygen

(OOO) ADF. We rationalize this choice of training data by the fact that H2O and
D2O share the same underlying PES, but are subject to different quantum fluctuations;
hence, a PI-AIMD simulation of the single lighter isotope (liquid H2O) covers the
relevant sector of configuration space for both isotopes. This conclusion is supported by
independently testing that the DPMD model trained on quantum H2O describes with
similar accuracy classical H2O. In doing so, we show that the combination of vdW-
inclusive hybrid DFT as the source of the underlying PES, the Feynman discretized
PI approach for treating NQEs, and the highly efficient DPMD model constitutes a
versatile ab initio based framework that enables one to attack problems in chemistry,
physics, and materials science that require extensive and simultaneous sampling of both
thermal and nuclear quantum fluctuations on a quite accurate PES.

The remainder of the manuscript is organized as follows. In Sec. 2, we describe
the computational details required for obtaining the initial PES using vdW-inclusive
hybrid DFT and the subsequent generation of the DPMD model parameters needed
for performing DPMD and PI-DPMD simulations of liquid H2O and D2O. In Sec. 3,
we perform a detailed case study of how isotope effects manifest in the equilibrium
structural properties of liquid water, including a comparative analysis of our theoretical
findings with the experimental work of the Soper and Benmore [3]. In Sec. 4, we
provide a brief summary of this work accompanied by some remarks about potential
improvements to this approach for the study of liquid water and its many unusual
properties.

2. Computational methods

Our study of the isotope effects in liquid H2O and D2O via DPMD and PI-DPMD
simulations was performed in three stages. The first stage is the generation of training
data for the DPMD model based on a PI-AIMD simulation of liquid H2O with vdW-
inclusive hybrid DFT (Sec. 2.1). The second stage is the training of the DPMD model
parameters based on this PI-AIMD trajectory (Sec. 2.2). The third and final stage is
the utilization of this model in DPMD and PI-DPMD simulations to equilibrate and
sample the statistical ensembles of liquid H2O and D2O (Sec. 2.3).

2.1. Generation of DPMD training data via PI-AIMD simulation of
liquid H2O

To generate the ab initio PES data for liquid water that is required for training the
DPMD model, we performed a single isobaric-isothermal (NpT ) Born-Oppenheimer
PI-AIMD simulation (with a time step of ∆t ≈ 0.5 fs) of a cubic periodic cell containing
64 H2O molecules at ambient (300 K and 1.0 bar) conditions. We started from a
previously equilibrated NpT PI-AIMD trajectory at the PBE0-TS level carried out
at 330 K and 1.0 bar [61], and performed an initial ≈ 1 ps NpT PI-AIMD simulation
in which the temperature was gradually lowered from 330 K to 300 K. A final NpT
PI-AIMD production run was then performed for ≈ 8 ps under ambient conditions of
300 K and 1 bar; this ab initio PES data will be used to train the DPMD model as
described in Sec. 2.2.

In the PI-AIMD simulation, the nuclei were modeled with an 8-bead ring polymer
supplemented with a colored-noise generalized Langevin equation thermostat (i.e.,
PIGLET) [39, 40] to accelerate convergence with respect to the Trotter dimension.
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The cell was treated classically using the Raiteri-Gale-Bussi approach [62] and was
thermostatted with an additional generalized Langevin equation thermostat [63]. The
cell mass was chosen to be consistent with a 200 fs characteristic timescale, and the
corresponding equations of motion for the ionic and cell degrees of freedom were
integrated using the i-PI package [64]. To prevent shearing of the liquid, cubic cell
symmetry was enforced during all NpT simulations.

The ionic forces and stress tensor (which are required by i-PI) were computed at the
PBE0-TS level [21–23] using a linear-scaling exact-exchange algorithm [1, 65–67] and a
self-consistent implementation of the Tkatchenko-Scheffler (TS) vdW correction [23, 24],
as provided in the CP package of Quantum ESPRESSO [68, 69]. The core electrons were
treated with Hamann-Schlüter-Chiang-Vanderbilt (HSCV) norm-conserving pseudopo-
tentials [70, 71], as distributed with the Qbox suite of programs [72], while the valence
(pseudo-)wavefunctions were represented explicitly with a planewave basis set. To main-
tain a constant planewave kinetic energy cutoff of 115 Ry during the NpT simulation,
we followed the procedure of Bernasconi et al. [73] by choosing: (i) a cubic reference cell
(with L = 24.7 Bohr) that is large enough to cover the fluctuations along each lattice
vector of the simulation cell throughout the NpT trajectory, and (ii) a corresponding
planewave basis set with a larger kinetic energy cutoff of 125 Ry. During the NpT
simulation, planewaves with a kinetic energy beyond the desired cutoff of 115 Ry were
smoothly penalized by changing

G2 → G2 +A

[
1 + erf

(
G2

2 − E0

σ

)]
. (1)

With a judicious choice of parameters (A = 200 Ry, σ = 15 Ry, E0 = 115 Ry), this
modification toG2 causes the higher-energy (> 115 Ry) planewaves to become essentially
inactive basis functions in the description of the valence (pseudo-)wavefunctions, and
thereby leads to NpT dynamics which mimic a constant planewave cutoff of ≈ 115 Ry.

The electronic ground state was obtained using nested second-order damped Car-
Parrinello dynamics [74] in which the ionic and cell degrees of freedom were kept
fixed. During the electron minimization, we employed a time step of ≈ 0.125 fs, a
fictitious electron mass of 200 au, and a mass preconditioning cutoff of 6 Ry. Additional
computational details regarding this PI-AIMD simulation will be provided in a forth-
coming paper [61]. The electronic structure calculation is considered converged when
the successive second-order-damped CP dynamics has a change in total potential energy
below 1.1× 10−6 au and a change of mean absolute ionic forces within 3.0× 10−4 au.

2.2. Training of the DPMD model

To train the DPMD model, we follow Ref [56] to determine a deep NN potential based
on the total potential energy E, the ionic forces {Fi} (for all N ions in the system), and
the virial Ξ (or equivalently, the stress tensor) at each step in the ≈ 8 ps production
PI-AIMD simulation described above. During the training of the DPMD model, we
minimize the following loss function L, which depends on the tunable parameters pε,
pf , and pξ, and is defined as follows:

L(pε, pf , pξ) = pε∆ε
2 +

pf
3N

∑
i

|∆Fi|2 +
pξ
9

∑
ij

|∆ξij |2. (2)

5



In this expression, ∆ε, ∆Fi, and ∆ξ are the differences between the current DPMD
prediction and the training data for the quantities ε ≡ E/N , Fi, and ξ ≡ Ξ/N ,
respectively. To optimize the parameters in the DPMD model, we used the Adam
method [75] with a learning rate that decays exponentially with the number of training
steps. In practice, we observed that more efficient training can be achieved by linearly
varying the parameters with respect to the learning rate (i.e., increasing pε and pξ while
decreasing pf ); in doing so, one can achieve a well-balanced training procedure in which
the energy, ionic forces, and virial are mutually consistent. All DPMD model training
was performed using the DeePMD-kit package [76] interfaced with the TensorFlow
library [77].

2.3. DPMD and PI-DPMD simulations of liquid H2O and D2O

To reduce finite-size effects and the statistical errors associated with relatively short
PI-AIMD simulations, we extended the system size by one order of magnitude to include
512 H2O molecules and the simulation timescale by two orders of magnitude to span
≈ 1 ns during the DPMD and PI-DPMD simulations described below. A single NpT
DPMD simulation (in which the nuclei are treated classically) of liquid water at ambient
(300 K and 1 bar) conditions was performed using the LAMMPS package [78]. The
temperature and pressure were controlled by Nosé-Hoover thermostat and barostat
chains [79] (with characteristic timescales of 0.1 ps and 0.5 ps, respectively), and an
integration time step of ≈ 0.5 fs. To perform PI-DPMD simulations of liquid H2O and
D2O, we integrated the DeePMD-kit and i-PI packages. All PI-DPMD simulations were
performed using exactly the same settings as the original PI-AIMD simulation (see
Sec. 2.1), including identical thermodynamic conditions, sampling techniques, and time
step. We then made the substitution of H to D, and repeated the PI-DPMD simulation
for heavy water. For both the DPMD and PI-DPMD simulations, we enforced cubic
cell symmetry as described in Sec. 2.1.

3. Results and discussion

By performing DPMD and PI-DPMD simulations trained on ab initio PES data with
extended time (≈ 1 ns) and length ((H2O)512) scales, this approach mitigates several
of the computational challenges associated with modeling complex condensed-phase
systems like liquid water. As an application, we use this ab initio based framework
to investigate how isotope effects influence the structural properties of ambient liquid
H2O and D2O. Based on extensive NpT PI-DPMD simulations of ambient liquid H2O
and D2O, we obtained essentially identical equilibrium atomic number densities of
ρ = 0.1022± 0.0001 atoms/Å3 for these systems. This value for ρ is slightly higher than
the experimental observations of ρ = 0.10007 atoms/Å3 (H2O) and 0.10000 atoms/Å3

(D2O) at 298 K. While the isotope effects on macroscopic properties such as ρ are
negligible, the isotope effects on the microscopic structural properties of liquid water
are still small (on the order of 3−4% from experiment [3]), but well above the statis-
tical uncertainty of our simulations. In this section, we investigate the isotope effects
on the microscopic structural properties of liquid water predicted by the PI-DPMD
simulations. In particular, we first compare against the interference differential cross
section F (n)

int (Q)—a reciprocal-space quantity that is directly measured by experiment—
to initially assess the accuracy of our simulations (Sec. 3.1). This is followed by a
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detailed comparative analysis with the following experimentally (EPSR) determined
real-space structural quantities: the oxygen–oxygen (OO), oxygen–hydrogen (OH/OD),
and hydrogen–hydrogen (HH/DD) radial distribution functions (RDFs) in Sec. 3.2, and
the oxygen–oxygen–oxygen (OOO) angular distribution function (ADF) in Sec. 3.3. We
complete this section by describing a potential route towards improving the predictions
of our approach using other electronic structure theory models (Sec. 3.4).

3.1. Isotope effects on the microscopic structure of liquid water:
Interference differential cross section

To provide a comparison with a directly measurable experimental quantity (and sidestep
any potential bias from the EPSR post-processing of the raw experimental data), we
first computed F (n)

int (Q) from our PI-DPMD trajectories as follows:

F
(n)
int (Q) =

{
c2Ob

2
OSOO(Q) + 2cOcHbObHSOH(Q) + c2Hb

2
HSHH(Q) for H2O

c2Ob
2
OSOO(Q) + 2cOcDbObDSOD(Q) + c2Db

2
DSDD(Q) for D2O

(3)

in which cα is the atom fraction for the α-th species (cO = 1/3, cH = 2/3, and cD = 2/3),
bα is the neutron scattering length of the α-th species (bO = 5.80 fm, bH = −3.74 fm,
and bD = 6.67 fm),1 and Sαβ(Q) is the partial structure factor for the αβ species
pair. In this work, the reciprocal-space Sαβ(Q) quantity was computed based on the
corresponding RDF for the αβ species pair (gαβ(r)) as follows:

Sαβ(Q) = 4πρ

∫
dr r2 [gαβ(r)− 1]

sinQr

Qr
. (4)

In Fig. 1, we compare the F (n)
int (Q) computed from DPMD simulations (in which the

nuclei are treated classically) and PI-DPMD simulations (in which the nuclei are treated
quantum mechanically) against the experimental results of Soper and Benmore [3].
For Q < 15 Å−1, the line shape of F (n)

int (Q) originates from the combined shapes of
SOO, SOH (SOD), and SHH (SDD). For higher Q, the OH (OD) contribution dominates
F

(n)
int (Q). As a consequence, the relative amplitude and (approximately) opposite phase

in F (n)
int (Q) for Q > 15 Å−1 between H2O and D2O mainly arise from the ratio in the

scattering length bH/bD ≈ −0.56. From the apparent differences in F (n)
int (Q) between

the DPMD and PI-DPMD simulations (for both H2O and D2O), it is clear that NQEs
play an important role in determining the structural properties of ambient liquid water.
By accounting for NQEs in the PI-DPMD simulations, the theoretical predictions for
F

(n)
int (Q) are in significantly improved agreement with experiment. Even with extensive

sampling of thermal and nuclear quantum fluctuations, however, small differences
still remain between the theoretical and experimental results. In this regard, more
pronounced discrepancies were observed in the F (n)

int (Q) for H2O; since this quantity is a
linear combination of SOO, SOH, and SHH via Eqs. (3) and (4), one can argue that such
differences primarily arise from deficiencies in the theoretical determinations of these
structure factors. Assuming that our sampling of the thermal and nuclear quantum
fluctuations in this system is indeed exhaustive and the DPMD model reproduces the
underlying ab initio PES [56, 57], this finding suggests that further improvement may

1Data source: https://www.ncnr.nist.gov/resources/n-lengths/elements/
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Q (Å−1)

−0.1

0.0

0.1

F
(n

)
in

t
(Q

)

D2O

DPMD

PI-DPMD (D2O)

Expt. (D2O, Soper 2008)

Figure 1.: Comparison of DPMD and PI-DPMD in predicting the experimentally
measured F (n)

int (Q) of H2O (top panel) and D2O (bottom panel) under ambient thermo-
dynamic conditions [3]. All PI-DPMD predictions (solid lines) and experimental results
(open circles) are colored red for H2O and blue for D2O. The DPMD simulation results
(in which the nuclei are treated classically) are plotted as dashed black lines in both
panels.

be needed in the model used to describe the electronic structure. Although the nuclei
in H2O and D2O move on the same PES in the Born-Oppenheimer approximation, the
lighter H atoms are more quantum mechanical in nature and will explore more of the
PES than the heavier (and more classical) D atoms at a given temperature. As such, PI-
DPMD simulations of liquid H2O are more sensitive to the finer details of the underlying
PES (e.g., surface curvature, barrier heights, and number/location/topology of local
minima). Since small deviations from the true PES (as derived from the exact solution
to the time-independent Schrödinger equation) will lead to incorrect sampling of this
surface during PI simulations (e.g., overestimation/underestimation of anharmonicity,
incorrect relative populations of different minima/basins), further improvements in the
electronic structure model are expected to improve our theoretical prediction of F (n)

int (Q)
for liquid water. Additional support for this conjecture is provided in Sec. 3.2.

3.2. Isotope effects on the microscopic structure of liquid water: Radial
distribution functions

To perform a more intuitive analysis of the isotope effects on the microscopic structure
of liquid water, we now consider how the isotopic substitution of H to D influences the
oxygen–oxygen (OO), oxygen–hydrogen (OH/OD), and hydrogen–hydrogen (HH/DD)
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Figure 2.: Comparison of the DPMD and PI-DPMD predictions of the following RDFs in
liquid H2O and D2O at ambient conditions (300 K, 1 bar): gOO(r) (top panel), gOH(r)
and gOD(r) (middle panel), and gHH(r) and gDD(r) (bottom panel). All PI-DPMD
predictions (solid lines) are colored red for H2O and blue for D2O, while the DPMD
results are plotted as dashed black lines in all three panels. The inset in the middle
panel provides a magnified view of the isotope effects beyond the first peak in the
gOH(r) and gOD(r) RDFs.

radial distribution functions (RDFs) of H2O and D2O. RDFs are real-space quantities
that measure the probability of finding a pair of atoms (of a given type) as a function
of their radial distance; these quantities are related to the structure factors used in
determining F (n)

int (Q) above (cf. Eqs. (3) and (4)), and are commonly used in studying
the structure of liquids. Based on the DPMD and PI-DPMD simulations described
above, we computed the gOO(r), gOH(r), and gHH(r) RDFs for liquid H2O (gOO(r),
gOD(r), and gDD(r) for liquid D2O) and plotted them in Fig. 2. From this figure,
one can see that the isotopic substitution H → D slightly increases the structure of
each RDF. This difference primarily originates from the reduced zero-point motion in
D2O, and is consistent with the changes observed in the RDFs of liquid H2O and D2O
obtained from simulations which account for NQEs [2]. Before entering into a detailed
discussion on the gOO(r)—a quantity that can also be determined via X-ray scattering
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experiments [80]—we first analyze the OH/OD and HH/DD RDFs.

Table 1.: Comparison of DPMD, PI-DPMD, and experimental/EPSR assigned [3]
average structural properties (in Å) in liquid H2O and D2O at ambient conditions
(300 K, 1 bar). dOH (dOD): OH (OD) covalent bond lengths; dO···H (dO···D): O· · ·H
(O· · ·D) HB lengths; dHH (dDD): (shortest) intermolecular HH (DD) distances. All
standard errors are smaller than 0.01 Å and are therefore omitted for clarity.

dOH dOD dO···H dO···D dHH dDD

DPMD 0.98 0.98 1.76 1.76 2.30 2.30
PI-DPMD 1.00 0.99 1.76 1.76 2.32 2.30

Expt./EPSR (Soper 2008) 1.01 0.98 1.74 1.81 2.42 2.37

Following the procedure outlined by Soper and Benmore [3], we computed the
following structural properties based on our PI-DPMD simulations of liquid H2O and
D2O: (i) the OH and OD covalent bond lengths (dOH and dOD), (ii) the O· · ·H and
O· · ·D HB lengths (dO···H and dO···D), and (iii) the (shortest) intermolecular HH and
DD distances (dHH and dDD). This data is summarized in Table 1, where we find
that PI-DPMD simulations predict that isotopic substitution from H to D leads to an
≈ 1% decrease in the covalent bond, a negligible (< 1%) change in the HB length, and
an ≈ 1% decrease in the (shortest) intermolecular HH/DD distance. These findings
are consistent with but smaller than the experimental/EPSR assignment of an ≈ 3%
contraction in dOD, an ≈ 4% elongation in dO···D, and an ≈ 2% contraction in dDD. The
experimental/EPSR assignment of these structural quantities requires post-processing
of the directly observable experimental data (i.e., F (n)

int (Q)). A direct experimental
probe of the intramolecular gOH(r) (gOD(r)) would be required to better assess the
intramolecular isotope effect. This was provided by an elegant oxygen istope substitution
experiment by Zeidler et al. [81, 82], in which they measured the difference between the
neutron scattering cross section of H2

18O (i.e., F (n,H18
2 O)

int (Q)) and of naturally occurring
H2O (i.e., F (n,H2O)

int (Q)). If the oxygen isotope effect on g(H2O)
OO (r) and g(H2O)

OH (r) (as well
as on g(D2O)

OO (r) and g(D2O)
OD (r)) is negligible, as one would expect, the inverse Fourier

transform (FT−1) of the measured cross sections would give for light and heavy water,
respectively:

∆GH(r) = FT−1[F
(n,H18

2 O)
int (Q)− F (n,H2O)

int (Q)]

= c2O
(
b218O − b2natO

) [
g
(H2O)
OO (r)− 1

]
+ 2cOcHbH (b18O − bnatO)

[
g
(H2O)
OH (r)− 1

]
,

(5)

∆GD(r) = c2O
(
b218O − b2natO

) [
g
(D2O)
OO (r)− 1

]
+ 2cOcDbD (b18O − bnatO)

[
g
(D2O)
OD (r)− 1

]
,

(6)

in which b18O = 6.01 fm and bnatO = 5.80 fm are the relevant neutron scattering
lengths. In the r range corresponding intramolecular OH (OD) bonds, g(H2O)

OO (r) and
g
(D2O)
OO (r) are both equal to zero. Thus, the intramolecular g(H2O)

OH (r) and g(D2O)
OD (r) can
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be extracted from Eqs. (5) and (6), respectively. The results are displayed in the upper
panel of Fig. 3, which also shows in the middle panel the results of our simulation,
and in the lower panel the corresponding RDFs from EPSR [3] as reported in Ref. [82].
The data points from the oxygen substitution experiment are few and affected by
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Figure 3.: Intramolecular RDF for OH (red) and OD (blue) from: oxygen substitu-
tion experiment [81, 82] (upper panel), PI-DPMD (middle panel), and the experimen-
tal/EPSR [3] data reported in Ref. [82] (lower panel).

uncertainty, reflecting the difficulty of the experiment. However, the OH to OD bond
contraction is clear and in qualitative agreement with both EPSR and PI-DPMD data.
To quantify the effect, Zeidler et al. estimated the peak position of the RDFs by spline
fitting obtaining a contraction of ≈ 0.5%, smaller than the ≈ 3% effect estimated from
EPSR but closer to our PI-DPMD estimate of ≈ 1%. Interestingly, the PI-DPMD RDFs
are asymmetric around the peak position, reflecting the anharmonicity of the potential
experienced by H (D), which is steeper when H (D) approaches oxygen. In spite of the
limited resolution, such anharmonicity seems to be present in the oxygen substitution
experiment. It is absent, however, in the EPSR data in which a harmonic approximation
was used for the OH (OD) potential. Further experiments would seem necessary to
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quantify accurately the OH to OD bond contraction. However, a 3% contraction seems
excessive in view of the fact that a contraction of only ≈ 0.4% is measured in the
vapor phase for the molecule in the roto-vibrational ground state [83], and a similar
contraction seems to occur also in ice Ih, albeit with a larger uncertainty [84].

In spite of the uncertainties that affect both theory and experiment significant
physical insight can be gleaned from the comparison of PI-DPMD simulations and
EPSR structures. Both approaches characterize the isotope effects as small and subtle
changes to the microscopic structure of liquid water. This finding is also consistent
with the differences observed between the predicted structural properties from DPMD
simulations (in which the nuclei are treated classically) and PI-DPMD simulations of
heavy (and hence more classical) liquid water (see Fig. 2).

Now we turn our discussion to gOO(r) in liquid H2O and D2O. In Fig. 4, we plot
this quantity as computed from PI-DPMD simulations, the experimental/EPSR proce-
dure [3], and a benchmark X-ray diffraction experiment [80]. Focusing on liquid H2O,
PI-DPMD underestimates the OO distance, as its gOO(r) is characterized by a first
peak that is shorter by ≈ 0.07 Å (around 2.5%) than the benchmark X-ray experiment
value of 2.80 Å. Interestingly, the benchmark X-ray assignment of the first-peak posi-
tion also agrees very well with a more sophisticated quantum Monte Carlo prediction
at 2.80 Å [85], reflecting the limitation of the PBE0-TS model. Such underestima-
tion in the shortest OO distance is consistent with previous simulations [1, 85]. This
underestimation in the shortest OO distance is likely a consequence of the residual
self-interaction error that is still present in the PBE0 functional and has also been
reported for water clusters [86, 87]. When compared with the benchmark X-ray result,
the experimental/EPSR assignment also slightly underestimates the position of the
first peak in the gOO(r) at 2.77 Å. While gOO(r) in both assignments are based on
X-ray scattering data, the benchmark result seems more accurate due to its higher
resolution—a resolution up to Qmax ≈ 24 Å−1 [80], which is higher than the measure-
ment with Qmax ≈ 18 Å−1 [88] used in the experimental/EPSR procedure [3]. Besides
the Qmax probed in a given X-ray experiment, the assignment of gOO(r) should also be
sensitive to the form factors used in deriving SOO(Q) from the scattering intensity. In
the benchmark experiment [80], the form factors are derived from the electron density
of a gas phase H2O molecule [89] instead of one in the liquid phase. However, such
condensed-phase effect on the form factors has been demonstrated negligible (≈ 1–2%)
and concentrated in the low-Q region (Q < 2 Å−1) [1], thereby reinforcing the central
role played by probing sufficiently high Qmax in the accurate experimental determination
of the first peak in gOO(r). Apart from the slightly overstructured gOO(r) within the
second (coordination) shell (i.e., r < 5.5 Å), the PI-DPMD prediction agrees quite well
with both experimental assignments. Interestingly, the PI-DPMD prediction yields a
long-range structural correlation beyond the third shell (r > 8 Å) as assigned in the
benchmark experiment to be observable up to the sixth shell (r ≈ 15 Å) [80].

When compared with the experimental/EPSR assignment, we observed similar isotope
effect in gOO(r) due to H→D beyond the first peak (r > 3 Å) as shown in the lower
panel of Fig. 4. However, the experimental/EPSR approach assigns an isotope increase
in the height of the first peak from 2.59 (H2O) to 2.84 (D2O) that is significantly larger
than PI-DPMD prediction (2.58→ 2.66). This difference could arise from the limitation
of the PBE0-TS model in the PI-DPMD simulation or the challenge to probe the high-Q
region in the X-ray scattering experiment. To resolve this issue, it seems necessary
to resort to either a high-resolution X-ray experiment on liquid D2O as performed
in Ref. [80] or a PI-DPMD simulation trained on realistic electronic structure theory
beyond the PBE0-TS level (see Sec. 3.4).
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Figure 4.: (Top panel) Comparison of gOO(r) in H2O from PI-DPMD simulations (solid
lines) and experiments (open circles for the experimental/EPSR assignment [3] and open
triangles for the benchmark X-ray diffraction study [80]). The saturation of the red color
in each curve has been adjusted to enhance the visibility. (Bottom panel) Comparison
of the PI-DPMD predictions of gOO(r) with assignments from the experimental/EPSR
procedure [3] for both liquid H2O and D2O. All PI-DPMD predictions (solid lines) and
experimental results (open circles) are colored red for H2O and blue for D2O.

3.3. Isotope effects on the microscopic structure of liquid water: Angular
distribution function and tetrahedrality

In this section, we consider how the isotopic substitution of H to D influences the
oxygen–oxygen–oxygen (OOO) angular distribution function (ADF) of H2O and D2O.
In this analysis, an OOO triplet is defined as any three O atoms (OA, OB, and OC)
in which OA and OB are located within a prescribed cutoff distance d3 from OC .
Following the procedure outlined by Soper and Benmore [3], d3 was chosen to yield an
average O–O coordination number of 4.0; in this work, we used d3 = 3.24 Å which is
consistent with previous AIMD simulations at the PBE0-TS level [1] but larger than
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the experimental/EPSR value of 3.18 Å [3]. In Fig. 5, we plot the POOO(θ) ADF—
the probability of finding the triplet angle (θ = ∠OAOCOB)—from the PI-DPMD
predictions and experimental/EPSR procedure [3] for liquid H2O and D2O.

In the ADF, the PI-DPMD prediction shows consistent isotope effects in which H2O
is less structured than D2O; this manifests as a reduced peak at ≈ 100◦ (due to the
tetrahedral HB network) and an enhanced peak at ≈ 50◦ (due to highly distorted
broken HB configurations). Compared with the experiment/EPSR assignment, the
isotope effect predicted by the PI-DPMD simulations is once again smaller in extent
(particularly for the peak at ≈ 50◦). While this discrepancy may due in part to the
limitation of the PBE0-TS model, it could also reflect the remaining uncertainty from
the experimental/EPSR assignment, which seems to overestimate the isotope effect
(e.g., in the OH to OD bond contraction as discussed in Sec. 3.2). On an absolute
scale, our predicted ADFs are slightly more structured with a higher main peak at
≈ 100◦ and a lower secondary peak at ≈ 50◦. This phenomenon is consistent with our
observations of the slightly overstructured gOO(r) within the second shell (Sec. 3.2).
However, unlike the gOO(r), the ADF is not directly probed from the experiment and
relies on the EPSR procedure. As such, more direct experiment or accurate simulation
seem necessary to quantify the ADFs and the associated isotope effects in ambient
liquid water.
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Figure 5.: Comparison of DPMD and PI-DPMD in predicting the experimentally
assigned [3] OOO ADF of liquid H2O and D2O at ambient conditions (300 K, 1 bar).
All PI-DPMD predictions (solid lines) and experimental results (open circles) are colored
red for H2O and blue for D2O, while the DPMD result is plotted as a dashed black
line. All ADFs were normalized such that

∫ π
0 dθ POOO(θ) sin(θ) = 1. The dashed green

vertical line reflects the interior angle of a perfect tetrahedron (θ = 109.5◦).
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3.4. Potential improvement and future outlook

It is well known that AIMD simulations which employ common GGA functionals (e.g.,
PBE [14] and BLYP [12, 13]) for the underlying PES yield a liquid water that is
substantially overstructured [1, 18, 19, 90–95]. This effect is reduced but not eliminated
with the inclusion of NQEs via PI-AIMD simulations [96]. In the present work, further
improvement is achieved by modeling the electronic structure at the PBE0-TS level,
which includes a fraction of exact exchange to mitigate the self-interaction error and an
effective-pairwise treatment of the non-local vdW interactions. As described throughout
this work, this improved electronic structure is not sufficient to provide a quantitative
description of the structural properties of liquid water, and there is still room for
further improvement. At the level of vdW-inclusive hybrid DFT, the revPBE0-D3
functional [21, 22, 27, 28] appears to predict a gOO(r) in better overall agreement with
experiment [29]. However, that functional predicts smaller NQEs than PBE0-TS; for
example, the differences between the classical and quantum RDFs for H2O reported in
Ref. [29] are smaller than that reported in this paper. This observation suggests that
revPBE0-D3 should also underestimate the isotope effects in the microscopic structural
properties of liquid water. These general difficulties of vdW-inclusive hybrid DFT most
likely originate from the imperfect cancellation of the self-interaction error inherent from
their approximated functional forms. To overcome these difficulties, it seems necessary
to apply a more sophisticated electronic structure theory such as self-interaction-free
DFT methods or highly accurate quantum chemical (wavefunction theory) approaches.
These approaches are substantially more expensive than hybrid DFT, and can only be
used to obtain accurate interatomic interactions (including the total potential energy,
atomic forces, and stress tensor) for a small subset of liquid water configurations. As
such, definite progress beyond vdW-inclusive hybrid DFT is possible if a ML-based
model (like DPMD) could be refined with a select set of accurate quantum chemical
data or direct observations from experiments (with approaches such as EPSR). Provided
with such an accurate and efficient interatomic potential, we expect that DPMD and
PI-DPMD simulations can also be used to study structural and thermal properties
of molecular crystals bound by HB interactions and dispersion forces [97–99], which
require the use of hybrid DFT corrected with a beyond effective-pairwise many-body
dispersion (MBD) model [100–102].

4. Conclusions

In this work, we demonstrate that the deep neural network based DPMD model—
when trained on a single, relatively short (≈ 8 ps) PI-AIMD simulation of liquid
H2O—can provide a (semi-)quantitative description of the isotope effects found in
F

(n)
int (Q), the gOO(r), gOH(r)/gOD(r), and gHH(r)/gDD(r) RDFs, and the POOO(θ)

ADF. Like the experimental/EPSR procedure of Soper and Benmore [3] and the oxygen
isotope substitution experiment of Zeidler et al. [81, 82], our PI-DPMD simulations
characterize these isotope effects as small and subtle changes to the microscopic structure
of liquid water. In doing so, we find that our approach predicts systematically smaller
isotope effects in liquid water compared with the experimental/EPSR procedure. This
discrepancy can be attributed to the imperfect description of the underlying PES at
the vdW-inclusive hybrid DFT (i.e., PBE0-TS) level of theory, or to the remaining
uncertainty due to the experimental challenge. Looking ahead, this work suggests that
the combination of ML-based techniques (such as the DPMD model) and a sufficient
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amount of highly accurate ab initio data (beyond the vdW-inclusive hybrid DFT level)
could pave the way towards studying subtle physical effects that were computationally
prohibited by the length and time scales accessible to standard AIMD and PI-AIMD
simulations.
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