Skip to main content

Multi-Pass Graph Streaming Lower Bounds for Cycle Counting, MAX-CUT, Matching Size, and Other Problems

Author(s): Assadi, Sepehr; Kol, Gillat; Saxena, Raghuvansh R; Yu, Huacheng

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1h55v
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAssadi, Sepehr-
dc.contributor.authorKol, Gillat-
dc.contributor.authorSaxena, Raghuvansh R-
dc.contributor.authorYu, Huacheng-
dc.date.accessioned2021-10-08T19:50:52Z-
dc.date.available2021-10-08T19:50:52Z-
dc.date.issued2020en_US
dc.identifier.citationAssadi, Sepehr, Gillat Kol, Raghuvansh R. Saxena, and Huacheng Yu. "Multi-pass graph streaming lower bounds for cycle counting, max-cut, matching size, and other problems." In IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS) (2020): pp. 354-364. doi:10.1109/FOCS46700.2020.00041en_US
dc.identifier.issn1523-8288-
dc.identifier.urihttps://arxiv.org/pdf/2009.03038.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1h55v-
dc.description.abstractConsider the following gap cycle counting problem in the streaming model: The edges of a 2-regular n-vertex graph G are arriving one-by-one in a stream and we are promised that G is a disjoint union of either k-cycles or 2k-cycles for some small k; the goal is to distinguish between these two cases using a limited memory. Verbin and Yu [SODA 2011] introduced this problem and showed that any single-pass streaming algorithm solving it requires n 1-Ω(1/k) space. This result and the proof technique behind it-the Boolean Hidden Hypermatching communication problem-has since been used extensively for proving streaming lower bounds for various problems, including approximating MAX-CUT, matching size, property testing, matrix rank and Schatten norms, streaming unique games and CSPs, and many others. Despite its significance and broad range of applications, the lower bound technique of Verbin and Yu comes with a key weakness that is also inherited by all subsequent results: the Boolean Hidden Hypermatching problem is hard only if there is exactly one round of communication and, in fact, can be solved with logarithmic communication in two rounds. Therefore, all streaming lower bounds derived from this problem only hold for single-pass algorithms. Our goal in this paper is to remedy this state-of-affairs. We prove the first multi-pass lower bound for the gap cycle counting problem: Any p-pass streaming algorithm that can distinguish between disjoint union of k-cycles vs 2k-cycles-or even k-cycles vs one Hamiltonian cycle-requires n 1-1/kΩ(1/p) space. This makes progress on multiple open questions in this line of research dating back to the work of Verbin and Yu. As a corollary of this result and by simple (or even no) modification of prior reductions, we can extend many of previous lower bounds to multi-pass algorithms. For instance, we can now prove that any streaming algorithm that ( 1+ε) -approximates the value of MAX-CUT, maximum matching size, or rank of an n-by- n matrix, requires either n Ω(1) space or Ω(log( 1 /ε)) passes. For all these problems, prior work left open the possibility of even an O(logn) space algorithm in only two passes.en_US
dc.format.extent354 - 364en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)en_US
dc.rightsAuthor's manuscripten_US
dc.titleMulti-Pass Graph Streaming Lower Bounds for Cycle Counting, MAX-CUT, Matching Size, and Other Problemsen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/FOCS46700.2020.00041-
dc.identifier.eissn2575-8454-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
MultiPassGraph.pdf631.26 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.