Skip to main content

Uncertainty Quantification for Nonconvex Tensor Completion: Confidence Intervals, Heteroscedasticity and Optimality

Author(s): Cai, Changxiao; Poor, H Vincent; Chen, Yuxin

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1gq6r26x
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCai, Changxiao-
dc.contributor.authorPoor, H Vincent-
dc.contributor.authorChen, Yuxin-
dc.date.accessioned2024-02-03T03:18:39Z-
dc.date.available2024-02-03T03:18:39Z-
dc.date.issued2022-09-12en_US
dc.identifier.citationCai, Changxiao, Poor, H Vincent, Chen, Yuxin. (2023). Uncertainty Quantification for Nonconvex Tensor Completion: Confidence Intervals, Heteroscedasticity and Optimality. IEEE Transactions on Information Theory, 69 (1), 407 - 452. doi:10.1109/tit.2022.3205781en_US
dc.identifier.issn0018-9448-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1gq6r26x-
dc.description.abstractWe study the distribution and uncertainty of nonconvex optimization for noisy tensor completion—the problem of estimating a low-rank tensor given incomplete and corrupted observations of its entries. Focusing on a two-stage estimation algorithm proposed by Cai et al. , we characterize the distribution of this nonconvex estimator down to fine scales. This distributional theory in turn allows one to construct valid and short confidence intervals for both the unseen tensor entries and the unknown tensor factors. The proposed inferential procedure enjoys several important features: (1) it is fully adaptive to noise heteroscedasticity, and (2) it is data-driven and automatically adapts to unknown noise distributions. Furthermore, our findings unveil the statistical optimality of nonconvex tensor completion: it attains un-improvable ℓ2 accuracy—including both the rates and the pre-constants—when estimating both the unknown tensor and the underlying tensor factors.en_US
dc.format.extent407 - 452en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Transactions on Information Theoryen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleUncertainty Quantification for Nonconvex Tensor Completion: Confidence Intervals, Heteroscedasticity and Optimalityen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/tit.2022.3205781-
dc.identifier.eissn1557-9654-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Uncertainty_Quantification_for_Nonconvex_Tensor_Completion_Confidence_Intervals_Heteroscedasticity_and_Optimality.pdf1.12 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.