Skip to main content

Nested Hierarchical Dirichlet Processes

Author(s): Paisley, John; Wang, Chong; Blei, David M; Jordan, Michael I

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1gn4d
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaisley, John-
dc.contributor.authorWang, Chong-
dc.contributor.authorBlei, David M-
dc.contributor.authorJordan, Michael I-
dc.date.accessioned2020-04-01T13:21:22Z-
dc.date.available2020-04-01T13:21:22Z-
dc.date.issued2015-04-18en_US
dc.identifier.citationPaisley, J., Wang, C., Blei, D. M., & Jordan, M. I. (2014). Nested hierarchical Dirichlet processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2), 256-270.en_US
dc.identifier.issn0162-8828-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1gn4d-
dc.description.abstractWe develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP generalizes the nested Chinese restaurant process (nCRP) to allow each word to follow its own path to a topic node according to a per-document distribution over the paths on a shared tree. This alleviates the rigid, single-path formulation assumed by the nCRP, allowing documents to easily express complex thematic borrowings. We derive a stochastic variational inference algorithm for the model, which enables efficient inference for massive collections of text documents. We demonstrate our algorithm on 1.8 million documents from The New York Times and 2.7 million documents from Wikipedia.en_US
dc.format.extent256 - 270en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Transactions on Pattern Analysis and Machine Intelligenceen_US
dc.rightsAuthor's manuscripten_US
dc.titleNested Hierarchical Dirichlet Processesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1109/TPAMI.2014.2318728-
dc.identifier.eissn2160-9292-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Blei - Nested Hierarchical Dirichlet Processes.pdf1.16 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.