Skip to main content

Near-field thermal upconversion and energy transfer through a Kerr medium

Author(s): Khandekar, C; Rodriguez, Alejandro W

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1fg2b
Abstract: We present an approach for achieving large Kerr χ(3)–mediated thermal energy transfer at the nanoscale that exploits a general coupled-mode description of triply resonant, four-wave mixing processes. We analyze the efficiency of thermal upconversion and energy transfer from mid- to near-infrared wavelengths in planar geometries involving two slabs supporting far-apart surface plasmon polaritons and separated by a nonlinear χ(3) medium that is irradiated by externally incident light. We study multiple geometric and material configurations and different classes of intervening mediums - either bulk or nanostructured lattices of nanoparticles embedded in nonlinear materials - designed to resonantly enhance the interaction of the incident light with thermal slab resonances. We find that even when the entire system is in thermodynamic equilibrium (at room temperature) and under typical drive intensities ~ W/μm2, the resulting upconversion rates can approach and even exceed thermal flux rates achieved in typical symmetric and non-equilibrium configurations of vacuum-separated slabs. The proposed nonlinear scheme could potentially be exploited to achieve thermal cooling and refrigeration at the nanoscale, and to actively control heat transfer between materials with dramatically different resonant responses.
Publication Date: 2017
Citation: Khandekar, C, Rodriguez, AW. (2017). Near-field thermal upconversion and energy transfer through a Kerr medium. Optics Express, 25 (23164 - 23180. doi:10.1364/OE.25.023164
DOI: doi:10.1364/OE.25.023164
Pages: 23164 - 23180
Type of Material: Journal Article
Journal/Proceeding Title: Optics Express
Version: Final published version. This is an open access article.



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.