Skip to main content

Efficient traffic splitting on commodity switches

Author(s): Kang, N; Ghobadi, M; Reumann, J; Rexford, Jennifer L.; Shraer, A

To refer to this page use:
Abstract: Traffic often needs to be split over multiple equivalent backend servers, links, paths, or middleboxes. For example, in a load-balancing system, switches distribute requests of online services to backend servers. Hash-based approaches like Equal-Cost Multi-Path (ECMP) have low accuracy due to hash collision and incur significant churn during update. In a Software-Defined Network (SDN) the accuracy of traffic splits can be improved by crafting a set of wildcard rules for switches that better match the actual traffic distribution. The drawback of existing SDN-based traffic-splitting solutions is poor scalability as they generate too many rules for small rule-tables on switches. In this paper, we propose Niagara, an SDN-based traffic-splitting scheme that achieves accurate traffic splits while being extremely efficient in the use of rule-table space available on commodity switches. Niagara uses an incremental update strategy to minimize the traffic churn given an update. Experiments demonstrate that Niagara (1) achieves nearly optimal accuracy using only 1.2%-37% of the rule space of the current state-of-art, (2) scales to tens of thousands of services with the constrained rule-table capacity and (3) offers nearly minimum churn.
Publication Date: 1-Dec-2015
Electronic Publication Date: 2015
Citation: Kang, N, Ghobadi, M, Reumann, J, Rexford, J, Shraer, A. (2015). Efficient traffic splitting on commodity switches. 10.1145/2716281.2836091
DOI: doi:10.1145/2716281.2836091
Type of Material: Conference Article
Journal/Proceeding Title: Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT 2015
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.