Reconstructing Neuronal Anatomy from Whole-Brain Images
Author(s): Gornet, James; Venkataraju, Kannan U; Narasimhan, Arun; Turner, Nicholas; Lee, Kisuk; et al
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr1dz6z
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gornet, James | - |
dc.contributor.author | Venkataraju, Kannan U | - |
dc.contributor.author | Narasimhan, Arun | - |
dc.contributor.author | Turner, Nicholas | - |
dc.contributor.author | Lee, Kisuk | - |
dc.contributor.author | Seung, H Sebastian | - |
dc.contributor.author | Osten, Pavel | - |
dc.contributor.author | Sümbül, Uygar | - |
dc.date.accessioned | 2021-10-08T19:45:05Z | - |
dc.date.available | 2021-10-08T19:45:05Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.citation | Gornet, James, Kannan Umadevi Venkataraju, Arun Narasimhan, Nicholas Turner, Kisuk Lee, H. Sebastian Seung, Pavel Osten, and Uygar Sümbül. "Reconstructing Neuronal Anatomy from Whole-Brain Images." 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI) (2019): pp. 218-222. doi:10.1109/ISBI.2019.8759197 | en_US |
dc.identifier.issn | 1945-7928 | - |
dc.identifier.uri | https://arxiv.org/pdf/1903.07027.pdf | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr1dz6z | - |
dc.description.abstract | Reconstructing multiple molecularly defined neurons from individual brains and across multiple brain regions can reveal organizational principles of the nervous system. However, high resolution imaging of the whole brain is a technically challenging and slow process. Recently, oblique light sheet microscopy has emerged as a rapid imaging method that can provide whole brain fluorescence microscopy at a voxel size of 0.4 × 0.4 × 2.5 μm 3 . On the other hand, complex image artifacts due to whole-brain coverage produce apparent discontinuities in neuronal arbors. Here, we present connectivity-preserving methods and data augmentation strategies for supervised learning of neuroanatomy from light microscopy using neural networks. We quantify the merit of our approach by implementing an end-to-end automated tracing pipeline. Lastly, we demonstrate a scalable, distributed implementation that can reconstruct the large datasets that sub-micron whole-brain images produce. | en_US |
dc.format.extent | 218 - 222 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | IEEE 16th International Symposium on Biomedical Imaging (ISBI) | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | Reconstructing Neuronal Anatomy from Whole-Brain Images | en_US |
dc.type | Conference Article | en_US |
dc.identifier.doi | 10.1109/ISBI.2019.8759197 | - |
dc.identifier.eissn | 1945-8452 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceeding | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ReconstructNeuronalAnatomyBrainImages.pdf | 2.87 MB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.