Skip to main content

Reconstructing Neuronal Anatomy from Whole-Brain Images

Author(s): Gornet, James; Venkataraju, Kannan U; Narasimhan, Arun; Turner, Nicholas; Lee, Kisuk; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1dz6z
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGornet, James-
dc.contributor.authorVenkataraju, Kannan U-
dc.contributor.authorNarasimhan, Arun-
dc.contributor.authorTurner, Nicholas-
dc.contributor.authorLee, Kisuk-
dc.contributor.authorSeung, H Sebastian-
dc.contributor.authorOsten, Pavel-
dc.contributor.authorSümbül, Uygar-
dc.date.accessioned2021-10-08T19:45:05Z-
dc.date.available2021-10-08T19:45:05Z-
dc.date.issued2019en_US
dc.identifier.citationGornet, James, Kannan Umadevi Venkataraju, Arun Narasimhan, Nicholas Turner, Kisuk Lee, H. Sebastian Seung, Pavel Osten, and Uygar Sümbül. "Reconstructing Neuronal Anatomy from Whole-Brain Images." 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI) (2019): pp. 218-222. doi:10.1109/ISBI.2019.8759197en_US
dc.identifier.issn1945-7928-
dc.identifier.urihttps://arxiv.org/pdf/1903.07027.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1dz6z-
dc.description.abstractReconstructing multiple molecularly defined neurons from individual brains and across multiple brain regions can reveal organizational principles of the nervous system. However, high resolution imaging of the whole brain is a technically challenging and slow process. Recently, oblique light sheet microscopy has emerged as a rapid imaging method that can provide whole brain fluorescence microscopy at a voxel size of 0.4 × 0.4 × 2.5 μm 3 . On the other hand, complex image artifacts due to whole-brain coverage produce apparent discontinuities in neuronal arbors. Here, we present connectivity-preserving methods and data augmentation strategies for supervised learning of neuroanatomy from light microscopy using neural networks. We quantify the merit of our approach by implementing an end-to-end automated tracing pipeline. Lastly, we demonstrate a scalable, distributed implementation that can reconstruct the large datasets that sub-micron whole-brain images produce.en_US
dc.format.extent218 - 222en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE 16th International Symposium on Biomedical Imaging (ISBI)en_US
dc.rightsAuthor's manuscripten_US
dc.titleReconstructing Neuronal Anatomy from Whole-Brain Imagesen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/ISBI.2019.8759197-
dc.identifier.eissn1945-8452-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
ReconstructNeuronalAnatomyBrainImages.pdf2.87 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.