Skip to main content

Quadrupolar interactions between acceptor pairs in p -doped semiconductors

Author(s): Durst, AC; Yang-Mejia, G; Bhatt, Ravindra N

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1ds0k
Abstract: We consider the interaction between acceptor pairs in doped semiconductors in the limit of large interacceptor separation relevant for low doping densities. Modeling individual acceptors via the spherical model of Baldereschi and Lipari, we calculate matrix elements of the quadrupole tensor between the four degenerate ground states and show that the acceptor has a nonzero quadrupole moment. As a result, the dominant contribution to the large-separation acceptor-acceptor interaction comes from direct (charge-density) terms rather than exchange terms. The quadrupole is the leading nonzero moment, so the electric quadrupole-quadrupole interaction dominates for large separation. We calculate the matrix elements of the quadrupole-quadrupole interaction Hamiltonian in a product-state basis and diagonalize, obtaining a closed-form expression for the energies and degeneracies of the sixteen-state energy spectrum. All dependence on material parameters enters via an overall prefactor, resulting in surprisingly simple and universal results. This simplicity is due, in part, to a mathematical happenstance, the nontrivial vanishing of a particular Wigner 6-j symbol, 222323232=0. Results are relevant to the control of two-qubit interactions in quantum computing implementations based on acceptor spins, as well as calculations of the thermodynamic properties of insulating p-type semiconductors.
Publication Date: 2020
Citation: Durst, AC, Yang-Mejia, G, Bhatt, RN. (2020). Quadrupolar interactions between acceptor pairs in p -doped semiconductors. Physical Review B, 101 (10.1103/PhysRevB.101.035202
DOI: doi:10.1103/PhysRevB.101.035202
Type of Material: Journal Article
Journal/Proceeding Title: Physical Review B
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.