Skip to main content

Acoustic Matching By Embedding Impulse Responses

Author(s): Su, Jiaqi; Jin, Zeyu; Finkelstein, Adam

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1d84j
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSu, Jiaqi-
dc.contributor.authorJin, Zeyu-
dc.contributor.authorFinkelstein, Adam-
dc.date.accessioned2021-10-08T19:51:04Z-
dc.date.available2021-10-08T19:51:04Z-
dc.date.issued2020en_US
dc.identifier.citationSu, Jiaqi, Zeyu Jin, and Adam Finkelstein. "Acoustic Matching By Embedding Impulse Responses." In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020): pp. 426-430. doi:10.1109/ICASSP40776.2020.9054701en_US
dc.identifier.issn1520-6149-
dc.identifier.urihttps://pixl.cs.princeton.edu/pubs/Su_2020_AMB/Su_Acoustic_Matching_ICASSP2020.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1d84j-
dc.description.abstractThe goal of acoustic matching is to transform an audio recording made in one acoustic environment to sound as if it had been recorded in a different environment, based on reference audio from the target environment. This paper introduces a deep learning solution for two parts of the acoustic matching problem. First, we characterize acoustic environments by mapping audio into a low-dimensional embedding invariant to speech content and speaker identity. Next, a waveform-to-waveform neural network conditioned on this embedding learns to transform an input waveform to match the acoustic qualities encoded in the target embedding. Listening tests on both simulated and real environments show that the proposed approach improves on state-of-the-art baseline methods.en_US
dc.format.extent426 - 430en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE International Conference on Acoustics, Speech and Signal Processingen_US
dc.rightsAuthor's manuscripten_US
dc.titleAcoustic Matching By Embedding Impulse Responsesen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/ICASSP40776.2020.9054701-
dc.identifier.eissn2379-190X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
AcousticMatching.pdf267.47 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.