Skip to main content

Communication Theoretic Data Analytics

Author(s): Chen, Kwang-Cheng; Huang, Shao-Lun; Zheng, Lizhong; Poor, H Vincent

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1d760
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Kwang-Cheng-
dc.contributor.authorHuang, Shao-Lun-
dc.contributor.authorZheng, Lizhong-
dc.contributor.authorPoor, H Vincent-
dc.date.accessioned2020-02-19T21:59:52Z-
dc.date.available2020-02-19T21:59:52Z-
dc.date.issued2015-04en_US
dc.identifier.citationChen, Kwang-Cheng, Shao-Lun Huang, Lizhong Zheng, and H. Vincent Poor. "Communication theoretic data analytics." IEEE Journal on Selected Areas in Communications 33, no. 4 (2015): 663-675. doi:10.1109/JSAC.2015.2393471en_US
dc.identifier.issn0733-8716-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1d760-
dc.description.abstractWidespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data are modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data are used to demonstrate the advantages of this approach. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness of this formalism. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.en_US
dc.format.extent663 - 675en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE Journal on Selected Areas in Communicationsen_US
dc.rightsAuthor's manuscripten_US
dc.titleCommunication Theoretic Data Analyticsen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1109/JSAC.2015.2393471-
dc.identifier.eissn1558-0008-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OA_CommunicationTheoreticDataAnalytics.pdf3.46 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.