Skip to main content

Linear Boolean Classification, Coding and the Critical Problem

Author(s): Abbe, Emmanuel; Alon, N; Bandeira, A; Sandon, C

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1cz6m
Abstract: This paper considers the problem of linear Boolean classification, where the goal is to determine in which set, among two given sets of Boolean vectors, an unknown vector belongs to by making linear queries. Finding the least number of queries is equivalent to determining the minimal rank of a matrix over GF(2), whose kernel does not intersect a given set S. In the case where S is a Hamming ball, this reduces to finding linear codes of largest dimension. For a general set S, this is an instance of the critical problem posed by Crapo and Rota in 1970, open in general. This paper focuses on the case where S is an annulus. As opposed to balls, it is shown that an optimal kernel is composed not only of dense but also of sparse vectors, and the optimal mixture is identified in various cases. These findings corroborate a proposed conjecture that for an annulus of inner and outer radius nq and np respectively, the optimal relative rank is given by the normalized entropy (1 - q) H(p/(1 - q)), an extension of the Gilbert-Varshamov bound.
Publication Date: Apr-2016
Citation: Abbe, Emmanuel, Alon, Noga, Bandeira, Afonso S, Sandon, Colin. (2016). Linear Boolean Classification, Coding and the Critical Problem. IEEE TRANSACTIONS ON INFORMATION THEORY, 62 (1667 - 1673. doi:10.1109/TIT.2016.2531085
DOI: doi:10.1109/TIT.2016.2531085
ISSN: 0018-9448
EISSN: 1557-9654
Pages: 1667 - 1673
Type of Material: Journal Article
Journal/Proceeding Title: IEEE TRANSACTIONS ON INFORMATION THEORY
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.