Skip to main content

Exploring collections of 3D models using fuzzy correspondences

Author(s): Kim, Vladimir G; Li, Wilmot; Mitra, Niloy J; DiVerdi, Stephen; Funkhouser, Thomas A

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1c81z
Abstract: Large collections of 3D models from the same object class (e.g., chairs, cars, animals) are now commonly available via many public repositories, but exploring the range of shape variations across such collections remains a challenging task. In this work, we present a new exploration interface that allows users to browse collections based on similarities and differences between shapes in user-specified regions of interest (ROIs). To support this interactive system, we introduce a novel analysis method for computing similarity relationships between points on 3D shapes across a collection. We encode the inherent ambiguity in these relationships using fuzzy point correspondences and propose a robust and efficient computational framework that estimates fuzzy correspondences using only a sparse set of pairwise model alignments. We evaluate our analysis method on a range of correspondence benchmarks and report substantial improvements in both speed and accuracy over existing alternatives. In addition, we demonstrate how fuzzy correspondences enable key features in our exploration tool, such as automated view alignment, ROI-based similarity search, and faceted browsing.
Publication Date: Jul-2012
Citation: Kim, Vladimir G., Wilmot Li, Niloy J. Mitra, Stephen DiVerdi, and Thomas Funkhouser. "Exploring collections of 3D models using fuzzy correspondences." ACM Transactions on Graphics (TOG) 31, no. 4 (2012): 54:1-54:11. doi:10.1145/2185520.2185550
DOI: 10.1145/2185520.2185550
ISSN: 0730-0301
EISSN: 1557-7368
Pages: 54:1 - 54:11
Type of Material: Journal Article
Journal/Proceeding Title: ACM Transactions on Graphics
Version: Author's manuscript



Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.