Skip to main content

Donor/acceptor charge-transfer states at two-dimensional metal halide perovskite and organic semiconductor interfaces

Author(s): Zhao, L; Lin, YL; Kim, H; Giebink, NC; Rand, Barry P

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1bs0w
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, L-
dc.contributor.authorLin, YL-
dc.contributor.authorKim, H-
dc.contributor.authorGiebink, NC-
dc.contributor.authorRand, Barry P-
dc.date.accessioned2021-10-08T20:16:34Z-
dc.date.available2021-10-08T20:16:34Z-
dc.date.issued2018en_US
dc.identifier.citationZhao, L, Lin, YL, Kim, H, Giebink, NC, Rand, BP. (2018). Donor/acceptor charge-transfer states at two-dimensional metal halide perovskite and organic semiconductor interfaces. ACS Energy Letters, 3 (2708 - 2712. doi:10.1021/acsenergylett.8b01722en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1bs0w-
dc.description.abstractMetal halide perovskite semiconductors with small exciton binding energy have been widely used in perovskite solar cells and achieved rapid progress in terms of device performance. However, the strong excitonic nature of two-dimensional (2D) perovskites with small n values remains underexploited (n represents the number of inorganic monolayer sheets sandwiched between bulky organic cation layers). In this work, we report experimental evidence of donor/acceptor charge-Transfer (CT) states formed at 2D metal halide perovskite/organic semiconductor heterojunctions, with a corresponding increase in photocurrent production for these excitonic materials. Furthermore, it is found that the size of the organic cation in the 2D perovskite layer plays a critical role in the CT process. The ability to dissociate excitons in 2D perovskites by interfacing with an organic semiconductor in a donor/acceptor configuration opens up new opportunities for exploiting the excitonic nature of low-dimensional perovskites in applications such as solar cells, photodetectors, light-emitting devices, and light-matter interactions. © 2018 American Chemical Societyen_US
dc.format.extent2708 - 2712en_US
dc.language.isoen_USen_US
dc.relation.ispartofACS Energy Lettersen_US
dc.rightsAuthor's manuscripten_US
dc.titleDonor/acceptor charge-transfer states at two-dimensional metal halide perovskite and organic semiconductor interfacesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1021/acsenergylett.8b01722-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Donor acceptor charge-transfer states at two dimensional metal halide perovskite and organic semiconductor interfaces.pdf1 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.