Skip to main content

Learning Shape Templates With Structured Implicit Functions

Author(s): Genova, Kyle; Cole, Forrester; Vlasic, Daniel; Sarna, Aaron; Freeman, William; et al

To refer to this page use:
Abstract: Template 3D shapes are useful for many tasks in graphics and vision, including fitting observation data, analyzing shape collections, and transferring shape attributes. Because of the variety of geometry and topology of real-world shapes, previous methods generally use a library of hand-made templates. In this paper, we investigate learning a general shape template from data. To allow for widely varying geometry and topology, we choose an implicit surface representation based on composition of local shape elements. While long known to computer graphics, this representation has not yet been explored in the context of machine learning for vision. We show that structured implicit functions are suitable for learning and allow a network to smoothly and simultaneously fit multiple classes of shapes. The learned shape template supports applications such as shape exploration, correspondence, abstraction, interpolation, and semantic segmentation from an RGB image.
Publication Date: 2019
Citation: Genova, Kyle, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, and Thomas Funkhouser. "Learning Shape Templates With Structured Implicit Functions." In IEEE/CVF International Conference on Computer Vision (ICCV) (2019): pp. 7153-7163. doi:10.1109/ICCV.2019.00725
DOI: 10.1109/ICCV.2019.00725
ISSN: 1550-5499
EISSN: 2380-7504
Pages: 7153 - 7163
Type of Material: Conference Article
Journal/Proceeding Title: IEEE/CVF International Conference on Computer Vision (ICCV)
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.