Skip to main content

Learning Single-Image Depth From Videos Using Quality Assessment Networks

Author(s): Chen, Weifeng; Qian, Shengyi; Deng, Jia

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19r72
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Weifeng-
dc.contributor.authorQian, Shengyi-
dc.contributor.authorDeng, Jia-
dc.date.accessioned2021-10-08T19:45:49Z-
dc.date.available2021-10-08T19:45:49Z-
dc.date.issued2019en_US
dc.identifier.citationChen, Weifeng, Shengyi Qian, and Jia Deng. "Learning Single-Image Depth From Videos Using Quality Assessment Networks." IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019): pp. 5597-5606. doi:10.1109/CVPR.2019.00575en_US
dc.identifier.issn1063-6919-
dc.identifier.urihttps://openaccess.thecvf.com/content_CVPR_2019/papers/Chen_Learning_Single-Image_Depth_From_Videos_Using_Quality_Assessment_Networks_CVPR_2019_paper.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19r72-
dc.description.abstractDepth estimation from a single image in the wild remains a challenging problem. One main obstacle is the lack of high-quality training data for images in the wild. In this paper we propose a method to automatically generate such data through Structure-from-Motion (SfM) on Internet videos. The core of this method is a Quality Assessment Network that identifies high-quality reconstructions obtained from SfM. Using this method, we collect single-view depth training data from a large number of YouTube videos and construct a new dataset called YouTube3D. Experiments show that YouTube3D is useful in training depth estimation networks and advances the state of the art of single-view depth estimation in the wild.en_US
dc.format.extent5597 - 5606en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.rightsAuthor's manuscripten_US
dc.titleLearning Single-Image Depth From Videos Using Quality Assessment Networksen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/CVPR.2019.00575-
dc.identifier.eissn2575-7075-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
LearnSingleImageDepthQualityAssessNetwork.pdf7.8 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.