Skip to main content

Heavy-hitter detection entirely in the data plane

Author(s): Sivaraman, V; Narayana, S; Rottenstreich, O; Muthukrishnan, S; Rexford, Jennifer L.

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19h45
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSivaraman, V-
dc.contributor.authorNarayana, S-
dc.contributor.authorRottenstreich, O-
dc.contributor.authorMuthukrishnan, S-
dc.contributor.authorRexford, Jennifer L.-
dc.date.accessioned2018-07-20T15:06:29Z-
dc.date.available2018-07-20T15:06:29Z-
dc.date.issued2017-04-03en_US
dc.identifier.citationSivaraman, V, Narayana, S, Rottenstreich, O, Muthukrishnan, S, Rexford, J. (2017). Heavy-hitter detection entirely in the data plane. 164 - 176. doi:10.1145/3050220.3063772en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19h45-
dc.description.abstractIdentifying the "heavy hitter" flows or flows with large traffic volumes in the data plane is important for several applications e.g., flow-size aware routing, DoS detection, and traffic engineering. However, measurement in the data plane is constrained by the need for linerate processing (at 10-100Gb/s) and limited memory in switching hardware. We propose HashPipe, a heavy hitter detection algorithm using emerging programmable data planes. HashPipe implements a pipeline of hash tables which retain counters for heavy flows while evicting lighter flows over time. We prototype HashPipe in P4 and evaluate it with packet traces from an ISP backbone link and a data center. On the ISP trace (which contains over 400,000 flows), we find that HashPipe identifies 95% of the 300 heaviest flows with less than 80KB of memory.en_US
dc.format.extent164 - 176en_US
dc.language.isoen_USen_US
dc.relation.ispartofSOSR 2017 - Proceedings of the 2017 Symposium on SDN Researchen_US
dc.rightsAuthor's manuscripten_US
dc.titleHeavy-hitter detection entirely in the data planeen_US
dc.typeConference Articleen_US
dc.identifier.doidoi:10.1145/3050220.3063772-
dc.date.eissued2017en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
Heavy hitter detection entirely in the data plane.pdf689.26 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.