Skip to main content

Advances and Open Problems in Federated Learning

Author(s): Kairouz, Peter; McMahan, H Brendan; Avent, Brendan; Bellet, Aurélien; Bennis, Mehdi; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19882n07
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKairouz, Peter-
dc.contributor.authorMcMahan, H Brendan-
dc.contributor.authorAvent, Brendan-
dc.contributor.authorBellet, Aurélien-
dc.contributor.authorBennis, Mehdi-
dc.contributor.authorNitin Bhagoji, Arjun-
dc.contributor.authorBonawitz, Kallista-
dc.contributor.authorCharles, Zachary-
dc.contributor.authorCormode, Graham-
dc.contributor.authorCummings, Rachel-
dc.contributor.authorD’Oliveira, Rafael GL-
dc.contributor.authorEichner, Hubert-
dc.contributor.authorEl Rouayheb, Salim-
dc.contributor.authorEvans, David-
dc.contributor.authorGardner, Josh-
dc.contributor.authorGarrett, Zachary-
dc.contributor.authorGascón, Adrià-
dc.contributor.authorGhazi, Badih-
dc.contributor.authorGibbons, Phillip B-
dc.contributor.authorGruteser, Marco-
dc.contributor.authorHarchaoui, Zaid-
dc.contributor.authorHe, Chaoyang-
dc.contributor.authorHe, Lie-
dc.contributor.authorHuo, Zhouyuan-
dc.contributor.authorHutchinson, Ben-
dc.contributor.authorHsu, Justin-
dc.contributor.authorJaggi, Martin-
dc.contributor.authorJavidi, Tara-
dc.contributor.authorJoshi, Gauri-
dc.contributor.authorKhodak, Mikhail-
dc.contributor.authorKonecný, Jakub-
dc.contributor.authorKorolova, Aleksandra-
dc.contributor.authorKoushanfar, Farinaz-
dc.contributor.authorKoyejo, Sanmi-
dc.contributor.authorLepoint, Tancrède-
dc.contributor.authorLiu, Yang-
dc.contributor.authorMittal, Prateek-
dc.contributor.authorMohri, Mehryar-
dc.contributor.authorNock, Richard-
dc.contributor.authorÖzgür, Ayfer-
dc.contributor.authorPagh, Rasmus-
dc.contributor.authorQi, Hang-
dc.contributor.authorRamage, Daniel-
dc.contributor.authorRaskar, Ramesh-
dc.contributor.authorRaykova, Mariana-
dc.contributor.authorSong, Dawn-
dc.contributor.authorSong, Weikang-
dc.contributor.authorStich, Sebastian U-
dc.contributor.authorSun, Ziteng-
dc.contributor.authorSuresh, Ananda Theertha-
dc.contributor.authorTramèr, Florian-
dc.contributor.authorVepakomma, Praneeth-
dc.contributor.authorWang, Jianyu-
dc.contributor.authorXiong, Li-
dc.contributor.authorXu, Zheng-
dc.contributor.authorYang, Qiang-
dc.contributor.authorYu, Felix X-
dc.contributor.authorYu, Han-
dc.contributor.authorZhao, Sen-
dc.date.accessioned2024-01-21T19:19:28Z-
dc.date.available2024-01-21T19:19:28Z-
dc.date.issued2021en_US
dc.identifier.citationKairouz, Peter, McMahan, H Brendan, Avent, Brendan, Bellet, Aurélien, Bennis, Mehdi, Nitin Bhagoji, Arjun, Bonawitz, Kallista, Charles, Zachary, Cormode, Graham, Cummings, Rachel, D’Oliveira, Rafael GL, Eichner, Hubert, El Rouayheb, Salim, Evans, David, Gardner, Josh, Garrett, Zachary, Gascón, Adrià, Ghazi, Badih, Gibbons, Phillip B, Gruteser, Marco, Harchaoui, Zaid, He, Chaoyang, He, Lie, Huo, Zhouyuan, Hutchinson, Ben, Hsu, Justin, Jaggi, Martin, Javidi, Tara, Joshi, Gauri, Khodak, Mikhail, Konecný, Jakub, Korolova, Aleksandra, Koushanfar, Farinaz, Koyejo, Sanmi, Lepoint, Tancrède, Liu, Yang, Mittal, Prateek, Mohri, Mehryar, Nock, Richard, Özgür, Ayfer, Pagh, Rasmus, Qi, Hang, Ramage, Daniel, Raskar, Ramesh, Raykova, Mariana, Song, Dawn, Song, Weikang, Stich, Sebastian U, Sun, Ziteng, Suresh, Ananda Theertha, Tramèr, Florian, Vepakomma, Praneeth, Wang, Jianyu, Xiong, Li, Xu, Zheng, Yang, Qiang, Yu, Felix X, Yu, Han, Zhao, Sen. (2021). Advances and Open Problems in Federated Learning. Foundations and Trends® in Machine Learning, 14 (1–2), 1 - 210. doi:10.1561/2200000083en_US
dc.identifier.issn1935-8237-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19882n07-
dc.description.abstractFederated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.en_US
dc.format.extent1 - 210en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofFoundations and Trends in Machine Learningen_US
dc.rightsAuthor's manuscripten_US
dc.titleAdvances and Open Problems in Federated Learningen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1561/2200000083-
dc.identifier.eissn1935-8245-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
kairouz2019advances.pdf1.26 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.