Skip to main content

Affine extractors over large fields with exponential error

Author(s): Bourgain, J; Dvir, Zeev; Leeman, E

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr19670
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBourgain, J-
dc.contributor.authorDvir, Zeev-
dc.contributor.authorLeeman, E-
dc.date.accessioned2018-07-20T15:07:00Z-
dc.date.available2018-07-20T15:07:00Z-
dc.date.issued2016-12en_US
dc.identifier.citationBourgain, J, Dvir, Z, Leeman, E. (2016). Affine extractors over large fields with exponential error. Computational Complexity, 25 (921 - 931. doi:10.1007/s00037-015-0108-5en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr19670-
dc.description.abstractWe describe a construction of explicit affine extractors over large finite fields with exponentially small error and linear output length. Our construction relies on a deep theorem of Deligne giving tight estimates for exponential sums over smooth varieties in high dimensions.en_US
dc.format.extent921 - 931en_US
dc.language.isoen_USen_US
dc.relation.ispartofComputational Complexityen_US
dc.rightsAuthor's manuscripten_US
dc.titleAffine extractors over large fields with exponential erroren_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1007/s00037-015-0108-5-
dc.date.eissued2015-09-02en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Affine extractors over large fields with exponential error.pdf118.79 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.