Skip to main content

A Regret Minimization Approach to Iterative Learning Control

Author(s): Agarwal, Naman; Hazan, Elad; Majumdar, Anirudha; Singh, Karan

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr18c9r426
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgarwal, Naman-
dc.contributor.authorHazan, Elad-
dc.contributor.authorMajumdar, Anirudha-
dc.contributor.authorSingh, Karan-
dc.date.accessioned2023-12-28T16:16:37Z-
dc.date.available2023-12-28T16:16:37Z-
dc.date.issued2021en_US
dc.identifier.citationAgarwal, Naman, Hazan, Elad, Majumdar, Anirudha and Singh, Karan. "A Regret Minimization Approach to Iterative Learning Control." Proceedings of the 38th International Conference on Machine Learning 139 (2021): 100-109.en_US
dc.identifier.issn2640-3498-
dc.identifier.urihttp://proceedings.mlr.press/v139/agarwal21b-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr18c9r426-
dc.description.abstractWe consider the setting of iterative learning control, or model-based policy learning in the presence of uncertain, time-varying dynamics. In this setting, we propose a new performance metric, planning regret, which replaces the standard stochastic uncertainty assumptions with worst case regret. Based on recent advances in non-stochastic control, we design a new iterative algorithm for minimizing planning regret that is more robust to model mismatch and uncertainty. We provide theoretical and empirical evidence that the proposed algorithm outperforms existing methods on several benchmarks.en_US
dc.format.extent100 - 109en_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the 38th International Conference on Machine Learningen_US
dc.relation.ispartofseriesProceedings of Machine Learning Research;-
dc.rightsFinal published version. This is an open access article.en_US
dc.titleA Regret Minimization Approach to Iterative Learning Controlen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
RegretMinimizationIterativeLearningControl.pdf493.47 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.