Skip to main content

Noise vs computational intractability in dynamics

Author(s): Braverman, Mark; Grigo, A; Rojas, C

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr1867n
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBraverman, Mark-
dc.contributor.authorGrigo, A-
dc.contributor.authorRojas, C-
dc.date.accessioned2018-07-20T15:07:09Z-
dc.date.available2018-07-20T15:07:09Z-
dc.date.issued2013-07-01en_US
dc.identifier.citationBraverman, M, Grigo, A, Rojas, C. (2012). Noise vs computational intractability in dynamics. 128 - 141. doi:10.1145/2090236.2090247en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr1867n-
dc.description.abstractComputation plays a key role in predicting and analyzing natural phenomena. There are two fundamental barriers to our ability to computationally understand the long-term behavior of a dynamical system that describes a natural process. The first one is unaccounted-for errors, which may make the system unpredictable beyond a very limited time horizon. This is especially true for chaotic systems, where a small change in the initial conditions may cause a dramatic shift in the trajectories. The second one is Turing-completeness. By the undecidability of the Halting Problem, the long-term prospects of a system that can simulate a Turing Machine cannot be determined computationally. We shall discuss the interplay between these two forces - unaccounted-for errors and Turing-completeness. We show that the introduction of even a small amount of noise into a dynamical system is sufficient to "destroy" Turing-completeness, and to make the system's long-term behavior computationally predictable. On a more technical level, we deal with long-term statistical properties of dynamical systems, as described by invariant measures. We show that while there are simple dynamical systems for which the invariant measures are non-computable, perturbing such systems makes the invariant measures efficiently computable. Thus, noise that makes the short term behavior of the system harder to predict, may make its long term statistical behavior computationally tractable. We also obtain some insight into the computational complexity of predicting systems affected by random noiseen_US
dc.format.extent128 - 141en_US
dc.language.isoen_USen_US
dc.relation.ispartof9th Conference on Computability in Europe - The Nature of Computation: Logic, Algorithms, Applications, CiE 2013en_US
dc.rightsAuthor's manuscripten_US
dc.titleNoise vs computational intractability in dynamicsen_US
dc.typeConference Articleen_US
dc.identifier.doidoi:10.1145/2090236.2090247-
dc.date.eissued2013en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
Noise vs computational intractability in dynamics.pdf265.11 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.