Skip to main content

Biocompatible surface functionalization architecture for a diamond quantum sensor

Author(s): Xie, Mouzhe; Yu, Xiaofei; Rodgers, Lila VH; Xu, Daohong; Chi-Durán, Ignacio; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17w67585
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXie, Mouzhe-
dc.contributor.authorYu, Xiaofei-
dc.contributor.authorRodgers, Lila VH-
dc.contributor.authorXu, Daohong-
dc.contributor.authorChi-Durán, Ignacio-
dc.contributor.authorToros, Adrien-
dc.contributor.authorQuack, Niels-
dc.contributor.authorde Leon, Nathalie P-
dc.contributor.authorMaurer, Peter C-
dc.date.accessioned2023-12-24T18:39:13Z-
dc.date.available2023-12-24T18:39:13Z-
dc.date.issued2022-02-22en_US
dc.identifier.citationXie, Mouzhe, Yu, Xiaofei, Rodgers, Lila VH, Xu, Daohong, Chi-Durán, Ignacio, Toros, Adrien, Quack, Niels, de Leon, Nathalie P, Maurer, Peter C. (2022). Biocompatible surface functionalization architecture for a diamond quantum sensor. Proceedings of the National Academy of Sciences, 119 (8), 10.1073/pnas.2114186119en_US
dc.identifier.issn0027-8424-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr17w67585-
dc.description.abstractQuantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.en_US
dc.languageenen_US
dc.language.isoen_USen_US
dc.relation.ispartofProceedings of the National Academy of Sciencesen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleBiocompatible surface functionalization architecture for a diamond quantum sensoren_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1073/pnas.2114186119-
dc.date.eissued2022-02-22en_US
dc.identifier.eissn1091-6490-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Biocompatible surface functionalization architecture for a diamond quantum sensor.pdf1.4 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.