Skip to main content

Adaptive link selection strategies for distributed estimation in diffusion wireless networks

Author(s): Xu, Songcen; Lamare, Rodrigo C de; Poor, H Vincent

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr17b6d
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXu, Songcen-
dc.contributor.authorLamare, Rodrigo C de-
dc.contributor.authorPoor, H Vincent-
dc.date.accessioned2020-02-19T22:00:32Z-
dc.date.available2020-02-19T22:00:32Z-
dc.date.issued2013-05en_US
dc.identifier.citationXu, Songcen, Rodrigo C. De Lamare, and H. Vincent Poor. "Adaptive link selection strategies for distributed estimation in diffusion wireless networks." In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, (2013): 5402-5405. doi:10.1109/ICASSP.2013.6638695en_US
dc.identifier.issn1520-6149-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr17b6d-
dc.description.abstractIn this work, we propose adaptive link selection strategies for distributed estimation in diffusion-type wireless networks. We develop an exhaustive search-based link selection algorithm and a sparsity-inspired link selection algorithm that can exploit the topology of networks with poor-quality links. In the exhaustive search-based algorithm, we choose the set of neighbors that results in the smallest mean square error (MSE) for a specific node. In the sparsity-inspired link selection algorithm, a convex regularization is introduced to devise a sparsity-inspired link selection algorithm. The proposed algorithms have the ability to equip diffusion-type wireless networks and to significantly improve their performance. Simulation results illustrate that the proposed algorithms have lower MSE values, a better convergence rate and significantly improve the network performance when compared with existing methods.en_US
dc.format.extent5402 - 5405en_US
dc.language.isoen_USen_US
dc.relation.ispartof2013 IEEE International Conference on Acoustics, Speech and Signal Processingen_US
dc.rightsAuthor's manuscripten_US
dc.titleAdaptive link selection strategies for distributed estimation in diffusion wireless networksen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/ICASSP.2013.6638695-
dc.identifier.eissn2379-190X-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
OAAdaptiveLinkSelectionStrategiesDistributedEstimationWirelessSensorNetworks.pdf198.6 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.