Skip to main content

Information Equals Amortized Communication

Author(s): Braverman, Mark; Rao, Anup

To refer to this page use:
Abstract: We show how to efficiently simulate the sending of a single message M to a receiver who has partial information about the message, so that the expected number of bits communicated in the simulation is close to the amount of additional information that the message reveals to the receiver. This is a generalization and strengthening of the Slepian-Wolf theorem, which shows how to carry out such a simulation with low amortized communication in the case that M is a deterministic function of X. A caveat is that our simulation is interactive. As a consequence, we prove that the internal information cost (namely the information revealed to the parties) involved in computing any relation or function using a two party interactive protocol is exactly equal to the amortized communication complexity of computing independent copies of the same relation or function. We also show that the only way to prove a strong direct sum theorem for randomized communication complexity is by solving a particular variant of the pointer jumping problem that we define. This paper implies that a strong direct sum theorem for communication complexity holds if and only if efficient compression of communication protocols is possible. In particular, together with our result, a recent result of Ganor, Kol, and Raz implies that the strongest version of direct sum for randomized communication complexity is false.
Publication Date: Oct-2014
Citation: Braverman, Mark, and Anup Rao. "Information Equals Amortized Communication." IEEE Transactions on Information Theory 60, no. 10 (2014): pp. 6058-6069. doi:10.1109/TIT.2014.2347282
DOI: 10.1109/TIT.2014.2347282
ISSN: 0018-9448
EISSN: 1557-9654
Pages: 6058 - 6069
Type of Material: Journal Article
Journal/Proceeding Title: IEEE Transactions on Information Theory
Version: Author's manuscript

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.