Skip to main content

The Coin Problem with Applications to Data Streams

Author(s): Braverman, Mark; Garg, Sumegha; Woodruff, David P

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16v75
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBraverman, Mark-
dc.contributor.authorGarg, Sumegha-
dc.contributor.authorWoodruff, David P-
dc.date.accessioned2021-10-08T19:50:42Z-
dc.date.available2021-10-08T19:50:42Z-
dc.date.issued2020en_US
dc.identifier.citationBraverman, Mark, Sumegha Garg, and David P. Woodruff. "The Coin Problem with Applications to Data Streams." In IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS) (2020): pp. 318-329. doi:10.1109/FOCS46700.2020.00038en_US
dc.identifier.issn1523-8288-
dc.identifier.urihttps://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/bgw20.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr16v75-
dc.description.abstractConsider the problem of computing the majority of a stream of n i.i.d. uniformly random bits. This problem, known as the coin problem, is central to a number of counting problems in different data stream models. We show that any streaming algorithm for solving this problem with large constant advantage must use Ω(log n) bits of space. We extend our lower bound to proving tight lower bounds for solving multiple, randomly interleaved copies of the coin problem, as well as for solving the OR of multiple copies of a variant of the coin problem. Our proofs involve new measures of information complexity that are well-suited for data streams. We use these lower bounds to obtain a number of new results for data streams. In each case there is an underlying d dimensional vector x with additive updates to its coordinates given in a stream of length m. The input streams arising from our coin lower bound have nice distributional properties, and consequently for many problems for which we only had lower bounds in general turnstile streams, we now obtain the same lower bounds in more natural models, such as the bounded deletion model, in which ||x|| 2 never drops by a constant fraction of what it was earlier, or in the random order model, in which the updates are ordered randomly. In particular, in the bounded deletion model, we obtain nearly tight lower bounds for approximating ||x|| ∞ up to additive error [1/(√k)]||x|| 2 , approximating ||x|| 2 up to a multiplicative ( 1+ε) factor (resolving a question of Jayaram and Woodruff in PODS 2018), and solving the Point Query and ℓ 2 -Heavy Hitters Problems. In the random order model, we also obtain new lower bounds for the Point Query and ℓ 2 -Heavy Hitters Problems. We also give new algorithms complementing our lower bounds and illustrating the tightness of the models we consider, including an algorithm for approximating ||x|| ∞ up to additive error [1/(√k)]||x||2 in turnstile streams (resolving a question of Cormode in a 2006 IITK Workshop), and an algorithm for finding ℓ 2 -heavy hitters in randomly ordered insertion streams (which for random order streams, resolves a question of Nelson in a 2018 Warwick Workshop).en_US
dc.format.extent318 - 329en_US
dc.language.isoen_USen_US
dc.relation.ispartofIEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)en_US
dc.rightsAuthor's manuscripten_US
dc.titleThe Coin Problem with Applications to Data Streamsen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/FOCS46700.2020.00038-
dc.identifier.eissn2575-8454-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
CoinProblemApplication.pdf783.33 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.