Skip to main content

Merging Economics and Epidemiology to Improve the Prediction and Management of Infectious Disease

Author(s): Perrings, Charles; Castillo-Chavez, Carlos; Chowell, Gerardo; Daszak, Peter; Fenichel, Eli P.; et al

To refer to this page use:
Abstract: Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as ‘‘economic epidemiology’’ or ‘‘epidemiological economics,’’ the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
Publication Date: Dec-2014
Electronic Publication Date: 19-Sep-2014
Citation: Perrings, Charles, Castillo-Chavez, Carlos, Chowell, Gerardo, Daszak, Peter, Fenichel, Eli P., Finnoff, David, Horan, Richard D., Kilpatrick, A. Marm, Kinzig, Ann P., Kuminoff, Nicolai V., Levin, Simon A., Morin, Benjamin, Smith, Katherine F., Springborn, Michael. (2014). Merging Economics and Epidemiology to Improve the Prediction and Management of Infectious Disease. EcoHealth, 11 (4), 464 - 475. doi:10.1007/s10393-014-0963-6
DOI: doi:10.1007/s10393-014-0963-6
ISSN: 1612-9202
EISSN: 1612-9210
Pages: 464 - 475
Type of Material: Journal Article
Journal/Proceeding Title: EcoHealth
Version: Final published version. This is an open access article.

Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.