Skip to main content

Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes

Author(s): Guan, Y; Gorenshteyn, D; Burmeister, M; Wong, Aaron K.; Schimenti, JC; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16q2k
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuan, Y-
dc.contributor.authorGorenshteyn, D-
dc.contributor.authorBurmeister, M-
dc.contributor.authorWong, Aaron K.-
dc.contributor.authorSchimenti, JC-
dc.contributor.authorHandel, MA-
dc.contributor.authorBult, CJ-
dc.contributor.authorHibbs, MA-
dc.contributor.authorTroyanskaya, Olga G.-
dc.date.accessioned2018-07-20T15:06:24Z-
dc.date.available2018-07-20T15:06:24Z-
dc.date.issued2012-09-27en_US
dc.identifier.citationGuan, Y, Gorenshteyn, D, Burmeister, M, Wong, AK, Schimenti, JC, Handel, MA, Bult, CJ, Hibbs, MA, Troyanskaya, OG. (2012). Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes. PLoS Computational Biology, 8 (10.1371/journal.pcbi.1002694en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr16q2k-
dc.description.abstractIntegrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as "functionality" and "functional relationships" are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.en_US
dc.language.isoen_USen_US
dc.relation.ispartofPLoS Computational Biologyen_US
dc.rightsFinal published version. Article is made available in OAR by the publisher's permission or policy.en_US
dc.titleTissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genesen_US
dc.typeJournal Articleen_US
dc.identifier.doidoi:10.1371/journal.pcbi.1002694-
dc.date.eissued2012-09-27en_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes.pdf1.17 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.