Skip to main content

Matterport3D: Learning from RGB-D Data in Indoor Environments

Author(s): Chang, Angel; Dai, Angela; Funkhouser, Thomas; Halber, Maciej; Niebner, Matthias; et al

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16p0c
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Angel-
dc.contributor.authorDai, Angela-
dc.contributor.authorFunkhouser, Thomas-
dc.contributor.authorHalber, Maciej-
dc.contributor.authorNiebner, Matthias-
dc.contributor.authorSavva, Manolis-
dc.contributor.authorSong, Shuran-
dc.contributor.authorZeng, Andy-
dc.contributor.authorZhang, Yinda-
dc.date.accessioned2021-10-08T19:49:29Z-
dc.date.available2021-10-08T19:49:29Z-
dc.date.issued2017en_US
dc.identifier.citationChang, Angel, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niebner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. "Matterport3D: Learning from RGB-D Data in Indoor Environments." In International Conference on 3D Vision (3DV) (2017): pp. 667-676. doi:10.1109/3DV.2017.00081en_US
dc.identifier.urihttps://arxiv.org/pdf/1709.06158.pdf-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr16p0c-
dc.description.abstractAccess to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification.en_US
dc.format.extent667 - 676en_US
dc.language.isoen_USen_US
dc.relation.ispartofInternational Conference on 3D Vision (3DV)en_US
dc.rightsAuthor's manuscripten_US
dc.titleMatterport3D: Learning from RGB-D Data in Indoor Environmentsen_US
dc.typeConference Articleen_US
dc.identifier.doi10.1109/3DV.2017.00081-
dc.identifier.eissn2475-7888-
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceedingen_US

Files in This Item:
File Description SizeFormat 
MatterportLearningRgbData.pdf9.32 MBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.