To refer to this page use:
http://arks.princeton.edu/ark:/88435/pr16g2x
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Qipeng | - |
dc.contributor.author | Zhandry, Mark | - |
dc.date.accessioned | 2021-10-08T19:48:16Z | - |
dc.date.available | 2021-10-08T19:48:16Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.citation | Liu, Qipeng, and Mark Zhandry. "On Finding Quantum Multi-collisions." In Annual International Conference on the Theory and Applications of Cryptographic Techniques (2019): pp. 189-218. doi:10.1007/978-3-030-17659-4_7 | en_US |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | https://arxiv.org/pdf/1811.05385v1.pdf | - |
dc.identifier.uri | http://arks.princeton.edu/ark:/88435/pr16g2x | - |
dc.description.abstract | A k-collision for a compressing hash function H is a set of k distinct inputs that all map to the same output. In this work, we show that for any constant k, 𝛩(𝑁12(1−12𝑘−1)) quantum queries are both necessary and sufficient to achieve a k-collision with constant probability. This improves on both the best prior upper bound (Hosoyamada et al., ASIACRYPT 2017) and provides the first non-trivial lower bound, completely resolving the problem. | en_US |
dc.format.extent | 189 - 218 | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartof | Annual International Conference on the Theory and Applications of Cryptographic Techniques | en_US |
dc.rights | Author's manuscript | en_US |
dc.title | On Finding Quantum Multi-collisions | en_US |
dc.type | Conference Article | en_US |
dc.identifier.doi | 10.1007/978-3-030-17659-4_7 | - |
dc.identifier.eissn | 1611-3349 | - |
pu.type.symplectic | http://www.symplectic.co.uk/publications/atom-terms/1.0/conference-proceeding | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FindingQuantumMultiCollisions.pdf | 283.12 kB | Adobe PDF | View/Download |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.