Skip to main content

Nonparametric variational inference

Author(s): Gershman, Samuel; Hoffman, Matt; Blei, David

Download
To refer to this page use: http://arks.princeton.edu/ark:/88435/pr16491
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGershman, Samuel-
dc.contributor.authorHoffman, Matt-
dc.contributor.authorBlei, David-
dc.date.accessioned2020-04-01T13:21:27Z-
dc.date.available2020-04-01T13:21:27Z-
dc.date.issued2012en_US
dc.identifier.citationGershman, S., Hoffman, M., & Blei, D. (2012). Nonparametric variational inference. In International Conference on Machine Learning.en_US
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/pr16491-
dc.description.abstractVariational methods are widely used for approximate posterior inference. However, their use is typically limited to families of distributions that enjoy particular conjugacy properties. To circumvent this limitation, we propose a family of variational approximations inspired by nonparametric kernel density estimation. The locations of these kernels and their bandwidth are treated as variational parameters and optimized to improve an approximate lower bound on the marginal likelihood of the data. Using multiple kernels allows the approximation to capture multiple modes of the posterior, unlike most other variational approximations. We demonstrate the efficacy of the nonparametric approximation with a hierarchical logistic regression model and a nonlinear matrix factorization model. We obtain predictive performance as good as or better than more specialized variational methods and sample-based approximations. The method is easy to apply to more general graphical models for which standard variational methods are difficult to derive.en_US
dc.language.isoen_USen_US
dc.relation.ispartofInternational Conference on Machine Learningen_US
dc.rightsFinal published version. This is an open access article.en_US
dc.titleNonparametric variational inferenceen_US
dc.typeConference Articleen_US
pu.type.symplectichttp://www.symplectic.co.uk/publications/atom-terms/1.0/journal-articleen_US

Files in This Item:
File Description SizeFormat 
1206.4665v1.pdf654.9 kBAdobe PDFView/Download


Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.