Emergent local integrals of motion without a complete set of localized eigenstates
Author(s): Geraedts, SD; Bhatt, Ravindra N; Nandkishore, R
DownloadTo refer to this page use:
http://arks.princeton.edu/ark:/88435/pr16083
Abstract: | Systems where all energy eigenstates are localized are known to display an emergent local integrability, in the sense that one can construct an extensive number of operators that commute with the Hamiltonian and are localized in real space. Here we show that emergent local integrability does not require a set of localized eigenstates to be complete. Given a set of localized eigenstates comprising a nonzero fraction (1-pf) of the full many-body spectrum, one can construct an extensive number of integrals of motion which are local in the sense that they have nonzero weight in a compact region of real space, in the thermodynamic limit. However, these modified integrals of motion have a "global dressing" whose weight vanishes as ∼pf as pf→0. In this sense, the existence of a nonzero fraction of localized eigenstates is sufficient for emergent local integrability. We discuss the implications of our findings for systems where the spectrum contains delocalized states, for systems with projected Hilbert spaces, and for the robustness of quantum integrability. |
Publication Date: | 13-Feb-2017 |
Electronic Publication Date: | 13-Feb-2017 |
Citation: | Geraedts, SD, Bhatt, RN, Nandkishore, R. (2017). Emergent local integrals of motion without a complete set of localized eigenstates. Physical Review B, 95 (10.1103/PhysRevB.95.064204 |
DOI: | doi:10.1103/PhysRevB.95.064204 |
Type of Material: | Journal Article |
Journal/Proceeding Title: | Physical Review B |
Version: | Author's manuscript |
Items in OAR@Princeton are protected by copyright, with all rights reserved, unless otherwise indicated.